
3/7/14	

1	

Stephen
Edwards

Manuel Pérez-

Quiñones

Virginia Tech
The Absolute Beginner’s

Guide to JUnit in the
Classroom

http://web-cat.org/sigcse2014

¡ “Software test” == a check on the
behavior of some piece of code

¡ “Unit test” == a test on a single
unit (usually a single class, or a
single method)

¡ Key ideas:

§ Write test in the form of program
code

§ So it can be automatically
repeated

What is
unit

testing?

¡ For you :
§ Repeatedly check behaviors of

many student programs

¡ For students (when they do it):
§ Repeatedly check code so far

works, as they make changes
Why?

¡ More work up front in writing an
assignment (you have to be more
careful)

¡ You have to write a solid solution ,
too!

¡ But this work buys you
advantages in the long run

§ Better, more carefully thought out
assignment writeups

§ Ability to automatically check
behavior of student solutions

You betcha!

Is it
more
work?

Basic Steps to Create
a Test Class

¡ A test case is an individual test
for a specific behavior in a unit

¡ A claim or assertion is a
statement expressing the
behavior or outcome we expect in
a test case

¡ A test fixture is the name for the
initial conditions used in one or
more test cases

¡ A test suite is a collection of test
cases

Testing
terms

3/7/14	

2	

¡ We write our tests in the form of
code

¡ An individual test case is written
in the form of a single method

¡ Test case methods are collected
together into a test class

¡ Each test class focuses on testing
the features of one class we have
written

¡ Each test class embodies one
test fixture (one set of initial
conditions for all the test cases it
contains)

Organizing
tests

In Java (using JUnit): The basic steps involved in a test

1.  Set up the “initial conditions” for the test

2.  Carry out the action(s) you want to test

3.  Check that the desired result(s) were
achieved

4.  Clean up (often unneeded in Java)

public class DvrRecording
{
 private String title;
 private int duration;

 public DvrRecording(
 String title, int duration)
 {
 ...
 }

 public String getTitle() { ... }
 public int getDuration() { ... }
 public String toString() { ... }
}

Suppose
we have
a class
for DVR
record-

ings

public void testToString()
{
 // 1. Initial conditions
 DvrRecording recording =
 new DvrRecording("Lost", 60);

 // 2. Action to test
 String output =
 recording.toString();

 // 3. Check expected results
 assertEquals(
 "Lost [60 min.]", output);
}

A test
might
look
like
this

public class DvrRecordingTest
 extends TestCase
{
 public void testToString()
 {
 ...
 }
}

Wrapped
inside a

basic
class

Naming convention

Common base class for
tests (if using JUnit 3)

public void testToString()
{
 DvrRecording recording =
 new DvrRecording("Lost", 60);
 assertEquals(
 "Lost [60 min.]”,
 recording.toString());
}

The
same,

but
shorter

Naming/signature convention

Assertions compare expected and actual outcomes

3/7/14	

3	

private DvrRecording recording;

// Initial conditions for all tests
public void setUp()
{
 recording =
 new DvrRecording("Lost", 60);
}

public void testToString()
{
 assertEquals(
 "Lost [60 min.]",
 recording.toString());
}

With
common

setup
factored

out

Always starts in a clean starting state

private DvrRecording recording;

@Before
public void setUp()
{
 recording =
 new DvrRecording("Lost", 60);
}
@Test
public void testToString()
{
 assertEquals(
 "Lost [60 min.]”,
 recording.toString());
}

The
same,
but in

JUnit 4
Annotations instead of inheritance

No more naming conventions

 Beginner’s Strategy

¡ Keep tests narrowly focused

¡ Write a separate test class for
class you need to test

¡ As a starting point, group all tests
for one class into a single test
class

¡ Example:

class ArrayQueue has all its tests
in test class ArrayQueueTest

Group
tests
into

classes

¡ Focus on testing one method at a
time

¡ For each method, write one or more
tests

§ Use a different test for each distinct
situation/behavior you want to test

¡ One test for simple methods,
multiple tests for complex methods

¡ Example:

Method enqueue() might have
separate tests for adding to an
empty queue, or a non-empty queue

Test
each

method
individ-

ually

¡ While each test should focus on
one method . . .

¡ You might need to use other
methods to set up the “initial
conditions”

¡ This is perfectly OK

¡ Example:

Using multiple enqueue() calls to
set up the initial conditions for
testing dequeue()

Think
carefully

about
initial
condi-
tions

3/7/14	

4	

¡ Write assertions to test all of the
expectations you have about what a
method does

¡ For a “function” , just testing the
return value is typical

¡ For more complex behaviors, use
your object’s accessors to make
claims about any relevant object
properties

Make
claims
about
every-
thing

assertEquals(expected , actual);

assertTrue(expression);

assertFalse(expression);

assertEquals(d1, d2, tolerance);

Less common:

assertNull(expression);

assertNotNull(expression);

assertSame(expected, actual);

assertNotSame(expected, actual);

fail();

Assert
methods
you can

use

Most common:

assertEquals(
 "these don’t match!",
 expected, actual);

fail("something broke");

¡ The message is optional

¡ Provided as the first parameter

¡ Used as the exception message if
an assertion fails

All
asserts

can take
a

message

JUnit Tips

public class StudentTest
 extends TestCase
{
 // fixture to be used for testing
 private Student aStudent;

 public void setUp()
 {
 // initialize it here
 aStudent = new Student(
 "Joe", "888-2993");
 }

 // all tests can use fixture
}

Use
fixtures
in your

test
cases

import student.TestCase;

public class StudentTest
 extends TestCase
{

 // can access to extra features!

}

Use
our

custom
base
class

3/7/14	

5	

¡ Set stdin in test cases
¡ Get history of stdout (cleanly

reset for each test)
¡ Newline normalization for output
¡ System.exit() throws exception
¡ Better error messages for student

assertion mistakes
¡ “Fuzzy” string matching (ignore

caps, punctuation, spacing, etc.)
¡ Regular expression and fragment

matching
¡ Adaptive infinite loop protection

during grading
¡ Swing GUI testing through LIFT

Our
testing
library

provides
...

In our student.jar library:
import student.TestCase;

public class HelloWorldTest
 extends TestCase
{
 public void testMain()
 {
 // call main()!
 HelloWorld.main(null);
 }
}

Call
main()

like any
other

method

Call main() like any
other method

public static void main(String[] args)
{
 System.out.println("Hello world!");
}

Testing
output

from
main()

public void testMain()
{
 HelloWorld.main(null);
 assertEquals("Hello world!\n",
 systemOut().getHistory());
}

import java.util.Scanner;

public class HelloWorld
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

 System.out.print(
 "Enter your name: ");
 String name = in.next();
 System.out.println(
 "Hello, " + name + "!");
 }
}

Consider
this

example

public void testMain()
{
 // Don't forget the newline!
 setSystemIn("Joe\n");

 HelloWorld.main(null);
 assertEquals(

 "Enter your name: Hello, Joe!\n",
 systemOut().getHistory());
}

Set
contents

of
standard

input

public void testMain()
{
 setSystemIn("Joe\n");
 HelloWorld.main(null);

 assertTrue(systemOut()

 .getHistory()
 .contains("Hello, Joe!"));

}

Test
just

part of
the

output,
as

needed

3/7/14	

6	

public void testMain()
{
 HelloWorld.main(
 new String[] { "Joe" });
 ...
}

Providing
command
line args

public static void main(String[] args)
{
 System.out.println("Hello world!");
 System.exit(0);
}

What if
main
calls

exit()?

public void testMain()
{
 try
 {
 HelloWorld.main(null);
 }
 catch (ExitCalledException e)
 {
 assertEquals(0, e.getStatus());
 }
 assertEquals("Hello world!\n",
 systemOut().getHistory());
}

Testing exceptional conditions

¡ Unexpected exceptions are handled automatically
by JUnit

¡ If you want to test explicitly thrown exception:

§ JUnit 3: use try/catch

§ JUnit 4: add ‘expected’ parameter to the @Test
annotation

JUnit 3
example

public void testWithException()
{
 try
 {
 // Expect this to throw
 someObject.blowsUp();

 // Shouldn’t reach here
 fail("Didn’t throw!");
 }
 catch (Exception e)
 {
 // If we reach here, it worked
 // so no action necessary
 }
}

JUnit 4
example

@Test(expected = Exception.class)
public void testWithException()
{
 // Expect this to throw
 someObject.blowsUp();
}

Tools and test runners

3/7/14	

7	

¡ Most XUnit frameworks
include test runners that
allow you to directly execute
test cases from one class or
many

¡ Often, either textual or
graphical output is available

¡ Many IDEs include direct
support for running such
test cases (BlueJ, Eclipse,
JGRASP, .. .)

Tools make running tests easy One example: JAM*Tester

Another:
Web-CAT Adding Tests to

Assignments

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

¡ Students appreciate the feedback from tests, but
will avoid thinking more deeply about the

problem

¡ Seeing the results from a complete set of tests
discourages student from thinking about how to

check about their solution on their own

¡ This limits their learning ...

If you give students tests instead of
writing their own

3/7/14	

8	

¡ Don’t expect to teach students to
write tests if you’ve never done it
before

¡ Add unit tests gradually

¡ Try it out for yourself first

¡ Build up some experience before
you ask students to write their
own

Learn to write tests yourself first!

But ...

¡ Exceptional conditions

¡ Main programs

¡ Code that reads/write to/from
stdin/stdout or files

¡ Assignments with lots of design
freedom

¡ Code with graphical output

¡ Code with a graphical user
interface

Areas
to look
out for

How do you write tests for:

Assignments with lots of design
freedom

¡ Allowing design freedom is good so students can
learn design

¡ Two kinds of design freedom:

§ Students can make different design choices to
implement the same required behavior

§ Students have latitude to add their own individual
additions or flourishes or extras

When students implement same
behavior in different ways

¡ Good for practicing design skills

¡ To test required behavior, use a fixed API that
encapsulates the design freedom

¡ Write reference test against that API

¡ Or , just test common/required elements, and let
students be responsible for testing the rest

When students add their own extras

¡ Good to encourage creativity and individual
expression

¡ Limit instructor tests to only required features

¡ Write flexible tests that don’t impose extra
(hidden) assumptions

¡ Have students write their own test for their
extensions

Testing programs with graphical
output

¡ The key: if graphics are only for output, you can
ignore them in testing

¡ Ensure there are enough methods to extract the
key data in test cases

¡ We use this approach for testing Karel the Robot
programs, which use graphic animation so
students can observe behavior

3/7/14	

9	

Testing programs with graphical UIs

¡ This is a harder problem—maybe too distracting
for many students, depending on their level

¡ The key question: what is the goal in writing the
tests? Is it the GUI you want to test, some internal
behavior, or both?

¡ Three basic approaches:

§ Specify a well-defined boundary between the GUI
and the core, and only test the core code

§ Switch in an alternative implementation of the UI
classes during testing

§ Test by simulating GUI events

LIFT is our library for testing GUIs

¡ Student friendly
¡ Easy to write JUnit test for Swing, JTF, and

objectdraw
¡ Android version called RoboLIFT
¡ See our SIGCSE 2011 and 2012 papers on LIFT and

RoboLIFT

¡ Requires greater clarity and specificity

¡ Requires you to explicitly decide what you wish to
test, and what you wish to leave open to student

interpretation

¡ Requires you to unambiguously specify the behaviors
you intend to test

¡ Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

¡ Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing
design

Lessons learned writing testable
assignments

Why have we added software testing
across our programming core?

¡ Students cannot test their own
code

¡ Want a culture shift in student
behavior

¡ A single upper-division course
would have little impact on
practices in other classes

¡ So: Systematically incorporate
testing practices across many
courses

CS1

CS2

OO
Design

Data
Struct

Testing
Practices

¡ Now it’s almost routine

¡ Tools like JUnit , and XUnit
frameworks for other languages,
make it much easier

¡ Built-in support by many
mainstream and educational IDEs
makes it much easier

¡ Many instructors have also
experimented with automated
grading based on such testing
frameworks

More
educators
are
adding
software
testing
to their
program-
ming
courses

Software testing helps students
frame and carry out experiments

¡ The problem : too much focus on synthesis and
analysis too early in teaching CS

¡ Need to be able to read and comprehend source
code

¡ Envision how a change in the code will result in a
change in the behavior

¡ Need explicit, continually reinforced practice in
hypothesizing about program behavior and then
experimentally verifying their hypotheses

3/7/14	

10	

¡ Our community is our most
valuable asset!

 http://web-cat.org

Thank
You!

