
2/29/12	

1	

The Absolute Beginner’s Guide to JUnit
in the Classroom

Stephen Edwards and	 Manuel	 A.	 Pérez-‐Quiñones	
edwards@cs.vt.edu, perez@cs.vt.edu

Virginia Tech
Department of Computer Science

http://web-cat.org/

NSF DUE-‐0633594	 and	 DUE-0618663	

More educators are adding software
testing to their programming courses
§  Now it’s almost routine

§  Tools like JUnit, and XUnit frameworks for
other languages, make it much easier

§  Built-in support by many mainstream and
educational IDEs makes it much easier

§  Many instructors have also experimented with
automated grading based on such testing
frameworks

Why have we added software testing across
our programming core?

§  Students cannot test their own
code

§  Want a culture shift in student
behavior

§  A single upper-division course
would have little impact on
practices in other classes

§  So: Systematically incorporate
testing practices across many
courses

CS1

CS2

OO
Design

Data
Struct

Testing
Practices

GUIs

What is JUnit?

§  A unit testing framework

§  To understand this, we need to know …

Basic testing terms

§  Unit testing (one programmer’s work)

§  Integration testing (many units together)

§  End-to-end testing (“whole program”)

§  Acceptance testing (does the customer like it?)

§  Regression testing (re-running the same tests)

What is a software test?

§  A specific plan for how to execute a piece of
software

§  Together with a method for deciding whether it
behaves as intended

§  A test case is a single software test, usually
focused on checking just one situation or
behavior

§  A test suite is a collection of test cases, usually
run as a group

2/29/12	

2	

What is the goal of software testing?

§  Testing cannot prove software is correct

§  … But testing can prove software still contains
bugs

§  The goal of testing is to find bugs

§  … So a successful test run is one that reveals
one or more bugs

JUnit is about automating tests

§  Tests are written in the form of program code

§  They are executable

§  They can be repeated any time, for free

JUnit was created to support TDD

§  Test-driven development

§  “Write a little code, write a little test”

§  TDD involves writing new tests for each small
addition you make to your code

§  TDD involves constantly re-running tests you
have written so far each time you make a
change

§  Regression testing improves confidence that
changes work exactly as intended

Test-driven development is very
accessible for students

§  Also called “test-first coding”

§  Focuses on thorough unit testing at the level
of individual methods/functions

§  “Write a little test, write a little code”

§  Tests come first, and describe what is
expected, then followed by code, which must
be revised until all tests pass

§  Encourages lots of small (even tiny) iterations

Students can apply TDD and get
immediate, useful benefits

§  Conceptually, easy for students
to understand and relate to

§  Increases confidence in code

§  Increases understanding
of requirements

§  Preempts “big bang” integration

The basic steps involved in a test

1.  Set up the “initial conditions” for the test

2.  Carry out the action(s) you want to test

3.  Check that the desired result(s) were
achieved

4.  Clean up

2/29/12	

3	

The JUnit version of the basic steps

1.  Create a test class

2.  Set up the “initial conditions” in setUp()

3.  Write individual tests as test methods:

a.  Carry out the action(s) you want to test

b.  Check that the desired result(s) were
achieved

4.  Clean up using tearDown() (rarely needed)

Let’s learn about JUnit with live examples

Assertion methods in JUnit tests

§  assertEquals(x, y);

§  assertEquals(x, y, delta);

§  assertSame(x, y);

§  assertTrue(x);

§  assertFalse(x);

§  assertNull(x);

§  assertNotNull(x);

Lets look at examples using
JUnit 4

Any example situations you
would like to discuss?

How can you use testing in the
classroom?

2/29/12	

4	

Five common ways of using testing in
the classroom …

§  As part of an assignment specification

§  Acceptance testing

§  Automated grading

§  Students write their own tests for their own
code

§  Students write tests to learn testing and
debugging

As part of an assignment specification

§  Provide downloadable test cases in the
assignment

§  Students run the tests as a sanity check,
compliance to assignment specification

§  Details of method names, signatures, interfaces
are checked at compilation time

§  Gives student direct evidence that program runs
as expected

Acceptance testing

§  Instructor uses unit test in grading process

§  Professor gets compile-time compliance to
specification

§  Professor gets behavioral checks when tests are
run

§  Consistency in grading assignments

§  Ability to run all students as batch process (e.g.
JAM*Testor)

Automated Grading

§  Similar to acceptance test, but with fully
automated workflow

§  Students can get immediate feedback

§  Supports multiple submission, tight feedback
cycle

Students write their own testing code

§  Better quality, fewer bugs

§  Students are required to articulate
understanding of the behavior of their code

§  Testing is experimentally verifying that code
behaves as the student expects (or intends)

§  Grade students on how well they test their
code, not just whether it works or not

Students write test to learning testing
and debugging

§  Give students buggy code and ask them to
write tests to expose the bug

§  Fix bug and retest to confirm their fix works

2/29/12	

5	

Writing assignments so they can be
tested easily

The most important step in writing
testable assignments is …

§  Learning to write tests yourself

§  Writing an instructor’s solution with tests
that thoroughly cover all the expected
behavior

§  Practice what you are teaching/preaching

§  Extra effort before assignment is
“opened” (more prep time) but less effort
after assignment is due (less grading time)

Areas to look out for in writing
“testable” assignments
§  How do you write tests for the following:

ú  Testing exceptional conditions

ú  Main programs

ú  Code that reads/write to/from stdin/stdout or files

ú  Assignments with lots of design freedom

ú  Code with graphical output

ú  Code with a graphical user interface

Testing exceptional conditions

§  Unexpected exceptions are handled
automatically by JUnit

§  If you want to test explicitly thrown
exception:

ú  JUnit 3, use try/catch

ú  JUnit 4, add ‘expected’ parameter @test
annotation

Testing main programs

§  The key: think in object-oriented terms

§  There should be a principal class that does all the
work, and a really short main program

§  The problem is then simply how to test the
principal class (i.e., test all of its methods)

§  Make sure you specify your assignments so that
such principal classes provide enough accessors
to inspect or extract what you need to test

Testing input and output behavior

§  The key: specify assignments so that input and
output use streams given as parameters, and are
not hard-coded to specific sources destinations

§  Then use string-based streams to write test
cases; show students how

§  In Java, we use Scanners and PrintWriters for all
I/O

§  In C++, we use istreams and ostreams for all I/O

2/29/12	

6	

Assignments with lots of design
freedom
§  Allowing design freedom is good so students can

learn design

§  Two kinds of design freedom:

ú  Students can make different design choices to
implement the same required behavior

ú  Students have latitude to add their own
individual additions or flourishes or extras

When students implement same
behavior in different ways
§  Good for practicing design skills

§  To test required behavior, use a fixed API that
encapsulates the design freedom

§  Write reference test against that API

When students add their own extras

§  Good to encourage creativity and individual
expression

§  Limit instructor tests to only required
features

§  Write flexible tests that don’t impose extra
(hidden) assumptions

§  Have students write their own test for their
extensions

Mock objects can also help

§  A mock object is a ‘conveniently stubbed out’
replacement for the real thing for use in testing

§  Allows to decouple object being tested from
other object dependencies

§  Substitute behavior that is convenient for testing
for real behavior

§  Google ‘JUnit mock objects’ for more
information

Testing programs with graphical
output
§  The key: if graphics are only for output, you

can ignore them in testing

§  Ensure there are enough methods to extract
the key data in test cases

§  We used this approach for testing Karel the
Robot programs, which use graphic
animation so students can observe behavior

Testing programs with graphical UIs

§  This is a harder problem—maybe too distracting for
many students, depending on their level

§  The key question: what is the goal in writing the
tests? Is it the GUI you want to test, some internal
behavior, or both?

§  Three basic approaches:
ú  Specify a well-defined boundary between the GUI

and the core, and only test the core code
ú  Switch in an alternative implementation of the UI

classes during testing
ú  Test the actual GUI (see our SIGCSE 08 paper)

2/29/12	

7	

Testing a GUI

§  Button increments a counter
§  Button is embedded in a panel that is self

contained
§  Main program creates a window, puts the

panel in it and makes it visible

LIFT is our library for testing GUIs

§  Student friendly
§  Easy to write JUnit test for Swing, JTF, and

objectdraw
§  Android version called RoboLIFT
§  See our SIGCSE 2011 and 2012 papers on LIFT

and RoboLIFT

Lessons learned writing testable
assignments
§  Requires greater clarity and specificity

§  Requires you to explicitly decide what you wish to test,
and what you wish to leave open to student
interpretation

§  Requires you to unambiguously specify the behaviors
you intend to test

§  Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

§  Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing design

If you give students tests instead of
writing their own

§  Students appreciate the feedback from tests, but will
avoid thinking more deeply about the problem

§  Seeing the results from a complete set of tests
discourages student from thinking about how to check
about their solution on their own

§  This limits the learning benefits, which come in large
part from students writing their own tests

§  Lesson: balance providing suggestive feedback without
“giving away” the answers: lead the student to think
about the problem

Conclusion: including software testing
promotes learning and performance
§  If you require students to write their own tests …

§  Our experience indicates students are more likely
to complete assignments on time, produce one
third less bugs, and achieve higher grades on
assignments

§  It is definitely more work for the instructor

§  But it definitely improves the quality of
programming assignment writeups and student
submissions

Visit our Community Site

§  http://web-cat.org/

§  Info about using our automated
grader, getting trial accounts, etc.

§  Movies of making submissions,
setting up assignments, and more

§  Custom Eclipse and Visual Studio
plug-ins for C++-style TDD

§  Links to our own Eclipse feature
site

2/29/12	

8	

Thank you!

§  Our community is our most valuable asset!

 http://web-cat.org

It is time for any final questions …

§  About anything covered ...

§  About how we’ve used these techniques in courses

§  About how we start our freshmen out in the very
first lab

§  About the availability of Web-CAT

§  ... Or anything else you want to ask

