
Teaching Software Testing: Automatic Grading Meets
Test-first Coding

 Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
A new approach to teaching software testing is proposed: students
use test-driven development on programming assignments, and an
automated grading tool assesses their testing performance and
provides feedback. The basics of the approach, screenshots of the
sytem, and a discussion of industrial tool use for grading Java
programs are discussed.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools.

General Terms
Languages, Verification..

Keywords
Test-driven development, laboratory-based teaching, CS1, ex-
treme programming, Java.

1. INTRODUCTION
Virginia Tech has been seeking to improve the coverage of soft-
ware testing skills in our undergraduate program. Rather than
introducing a new course, we are attempting to apply an active-
learning approach to introducing testing concepts across the entire
CS curriculum [6]. Testing techniques for object-oriented soft-
ware are of particular interest, since our introductory sequence
teaches objects-first using Java. The goal is to teach testing in a
way that will encourage students to practice testing skills in many
classes and give them concrete feedback on their testing perform-
ance, without requiring a new course, any new faculty resources,
or a significant number of additional lecture hours.

The resulting strategy is founded on two ideas: have students use
test-driven development on their programming assignments from
the beginning, and then use an automated grading tool to mean-
ingfully assess their testing performance while also providing
rapid, concrete feedback on how to improve. This strategy has
been piloted to positive student reactions; an analysis of student
programs revealed that students produced 45% fewer bugs per
thousand lines of code using this approach [4].

2. TEST-DRIVEN DEVELOPMENT
Unfortunately, in most undergraduate programs, students get little
practical training in how to test their own code and often have
poor skills (and even poorer expectations) in this area. In order to
produce a cultural shift in the in the way our students acquire and
apply testing skills, a new approach is needed. The core idea
underlying this approach is that students should always practice
test-first coding, also known as test-driven development (TDD),
on their programming assignments from the beginning, across all
of their core courses.
TDD has been popularized by extreme programming. In TDD [1],
one always writes a test case (or more) before adding new code.
In fact, new code is only written in response to existing test cases
that fail. TDD is attractive for educational use. It is easier for
students to understand and relate to than more traditional testing
approaches. It promotes incremental development, promotes the
concept of always having a “running (if incomplete) version” of
the program at hand, and promotes early detection of errors intro-
duced by coding changes. It directly combats the “big bang”
integration problems that many students see when they begin to
write larger programs, where testing is saved until all the code
writing is complete. It dramatically increases a student’s confi-
dence in the portion of the code they have finished, and allows
them to make changes and additions with greater confidence be-
cause of continuous regression testing. Most importantly, stu-
dents begin to see these benefits for themselves after using TDD
on just a few assignments.

3. AUTOMATED GRADING
The key to implementing TDD across the board is a powerful
strategy for assessing student performance. The assessment ap-
proach should:

• Require a student test suite as part of every submission.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
OOPSLA ’03, October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

• Encourage students to write thorough tests.

• Encourage students to write tests as they code (in the spirit of
TDD), rather than postponing testing until after the code is
complete.

• Support the rapid cycling of “write a little test, write a little
code” that is the hallmark of TDD.

• Provide timely, useful feedback on the quality of the tests in
addition to the quality of the solution.

• Employ a grading/reward system that fosters the behavior we
want students to have.

Unfortunately, instructors and teaching assistants are already
overburdened with work while teaching computer science courses
and have little time to devote to additional assessment activities.
As a result, an automated tool for grading student programs is
desirable. Many educators have used automated systems to assess
and provide rapid feedback on large volumes of student pro-
gramming assignments [5, 8]. Such systems typically focus on
compilation and execution of student programs against some form
of instructor-provided test data. This approach ignores any test-
ing the student has performed and fails to provide the both the
assessment and the feedback necessary to properly facilitate TDD.

As a result, we have designed and implemented a general-purpose
automated grading tool and incorporated it into Web-CAT, the
Web-based Center for Automated Testing. Instead of automating
an assessment approach that focuses on the output of a student’s
program, instead we must focus on what is most valuable: the
student’s testing performance. To provide a meaningful assess-
ment of how correctly and thoroughly the tests conform to the
problem, the Web-CAT Grader examines three facets of the stu-
dent’s submission. First, Web-CAT assesses the validity of the
student’s tests in terms of how correctly they reflect the problem.
This can be done by running student tests against a (correct) ref-
erence implementation, and providing feedback on which tests are
incorrect. Second, Web-CAT assesses the completeness of the
student’s tests. This can be done by measuring the code coverage
achieved by the student’s tests on their code, as well as by using a
reference test suite intended to capture the full space of the prob-
lem. Feedback on which portions of the code were not properly
covered is returned to the student. Third, the style and quality of
the student’s code is assessed using static analysis tools that point
out specific problems.

Web-CAT is a web-based application implemented using Apple’s
WebObjects framework. It is designed to be language independ-
ent, but this poster focuses on grading object-oriented programs
written in Java. For Java programs, students write JUnit-
compatible test cases and submit them along with the other
classes in their assignment. Web-CAT uses Clover [3] to instru-
ment code for coverage analysis, and uses Checkstyle [2] and
PMD [7] to perform static analysis of coding and commenting
style and to spot potential coding issues. The reports produced by
these tools are merged into one seamless source code markup
viewable on the web by the student.
To support the rapid cycling between writing individual tests and
adding small pieces of code, the Web-CAT Curator will allow
unlimited submissions from students up until the assignment
deadline. Students can get feedback any time, as often as they

wish. However, their score is based in part on the tests they have
written, and their program performance is only assessed by the
tests they have written. As a result, to find out more about errors
in their own programs, it will be necessary for the student to write
the test cases. The feedback report will graphically highlight the
portions of the student code that are not tested so that the student
can see how to improve. Other coding or stylistic issues will also
be graphically highlighted.

4. EXPERIENCE AND CONCLUSION
This technique has been piloted in a junior-level undergraduate
class of 59 students using an earlier version of the Web-CAT
Grader. Students preferred this approach over that used in prior
classes, and tested their programs more thoroughly [4]. As a re-
sult, using TDD in class holds great promise for improving testing
skills. Providing a system for rapid assessment of student work,
including both the code and the tests they write, and ensuring
concrete, useful, and timely feedback, is critical. In addition to
assessing student performance, students can get real benefits from
using the approach, and these benefits are important for students
to internalize and use the approach being advocated.

5. ACKNOWLEDGMENTS
This work is supported in part by the Virginia Tech Institute for
Distance and Distributed Learning and by the National Science
Foundation under grant DUE-0127225. Any opinions, conclu-
sions or recommendations expressed in this paper are those of the
author and do not necessarily reflect the views of the NSF. The
author acknowledges the contributions of the students who have
implemented parts of the system: Anuj Shah, Amit Kulkarni, and
Gaurav Bhandari.

6. REFERENCES
[1] Beck, K. Test-Driven Development: By Example. Addison-

Wesley, Boston, MA. 2003.
[2] Checkstyle home page.

http://checkstyle.sourceforge.net/
[3] Clover: a code coverage tool for Java.

http://www.thecortex.net/clover/
[4] Edwards, S.H. Using test-driven development in the class-

room: providing students with automatic, concrete feedback
on performance. In Proc. Int’l Conf. Education and Infor-
mation Systems: Technologies and Applications, 2003, pp.
421-426.

[5] Jackson, D., and Usher, M. Grading student programs using
ASSYST. In Proc. 28th SIGCSE Technical Symp. Computer
Science Education, ACM, 1997, pp. 335-339.

[6] Jones, E.L. Software testing in the computer science cur-
riculum—a holistic approach. In Proc. Australasian Com-
puting Education Conf., ACM, 2000, pp. 153-157.

[7] PMD home page.
http://pmd.sourceforge.net/

[8] Reek, K.A. A software infrastructure to support introductory
computer science courses. In Proc. 27th SIGCSE Technical
Symp. Computer Science Education, ACM, 1996, pp. 125-
129.

