
Using Software Testing to Move Students from Trial-and-
Error to Reflection-in-Action

 Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
Introductory computer science students rely on a trial and error
approach to fixing errors and debugging for too long. Moving to
a reflection in action strategy can help students become more
successful. Traditional programming assignments are usually
assessed in a way that ignores the skills needed for reflection in
action, but software testing promotes the hypothesis-forming and
experimental validation that are central to this mode of learning.
By changing the way assignments are assessed—where students
are responsible for demonstrating correctness through testing, and
then assessed on how well they achieve this goal—it is possible to
reinforce desired skills. Automated feedback can also play a
valuable role in encouraging students while also showing them
where they can improve.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.2.5 [Software Engineering]: Testing and
Debugging—testing tools.

General Terms
Verification

Keywords
Pedagogy, test-driven development, CS1, extreme programming,
automated grading.

1. INTRODUCTION
Despite our best efforts as educators, student programmers con-
tinue to develop misguided views about their programming activi-
ties, particularly during freshman and sophomore courses:

• Once the compiler accepts my code without complaining, I
have removed all the errors.

• Once my code produces the output I expect on a test value or
two, it will work well all the time.

• My code looks “correct” to me. If it produces the wrong
answer, that does not make sense, so there must be some-
thing hidden that I do not understand about my code. I will
try switching around a few things to see if I can make the
problem go away.

• Once my code gives the correct answer for the instructor’s
sample data, I am finished.

While many computer science students acquire a more balanced
view of software development as they learn, other students do not
reach such a perspective for many semesters, and some never do
so. This situation places both the student and the educator at a
significant disadvantage. Anecdotally, many educators report
difficulties along these lines [12, 8, 5].
Computer science students will be more successful at learning if
they move from this trial and error approach to practicing reflec-
tion in action. “Reflection in action,” as originally described by
Schön [13], is a characterization of how practitioners complete
tasks in the face of uncertainty and novelty. When a technique or
part of a solution fails to work, difficulties or confusion cause the
practitioner to switch to a reflective mode, examining both the
phenomenon at hand and also prior understandings that may have
been implicit in his or her behavior. From this reflection, the
practitioner then “carries out an experiment which serves to gen-
erate both a new understanding of the phenomenon and a change
in the situation” [13]. This on-going experimentation is central to
finding a viable solution when past experiences do not work in a
new context without modification.
Many educators would agree that steering students toward reflec-
tion in action is a desirable goal, but typical programming as-
signments are poor devices for promoting this behavior. Students
receive feedback only on the end result they produce and tend to
equate a program that “produces the right output” with an “effec-
tive solution.” The learning process matters little in grade out-
comes, and students only receive indirect feedback on what and
how they learn via comments on their final solution. Students are
often able to succeed at simpler CS1 and CS2 assignments using a
trial-and-error approach, which only reinforces a strategy that will
handicap their performance in more advanced courses.
This situation can be improved through careful use of software
testing in programming assignments. From the very first pro-
gramming activities in CS1, a student should be given the respon-
sibility of demonstrating the correctness of his or her own code.
Such a student is required to submit test cases for this purpose
along with the code. While coding design and style are typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

assessed using an independent reading of the source code, we
must change the way we assess program correctness. Rather than
assessing student performance on whether their programs pro-
duce the correct output, students should be meaningfully assessed
on how well they have demonstrated the correctness of their pro-
gram through testing, that is, how correctly and thoroughly their
tests conform to the problem.

2. WHY STUDENTS STICK WITH TRIAL
AND ERROR
Trial and error is a well-established technique for beginners in
any discipline, and it is no surprise that this is where students start
out. But why do students persist in this practice long after it be-
comes a handicap? Buck and Stucki describe one possible reason
[4, 5]: most undergraduate curricula focus on developing program
application and synthesis skills (i.e., writing code), primarily
acquired through hands-on activities. In addition, students must
master basic comprehension and analysis skills. Without these
skills, they are poorly equipped for any strategy beyond trial and
error.
Bloom’s taxonomy describes six increasing levels of cognitive
development that can be used to frame and organize learning
objectives, labeled in increasing order of sophistication as: knowl-
edge, comprehension, application, analysis, synthesis, and evalua-
tion. Buck and Stucki provide a concise description of Bloom’s
taxonomy in a CS education context [4]. Bloom’s work suggests
that students must master basic comprehension and analysis skills
as a prerequisite for effective program writing. Students must
develop their abilities in reading and comprehending source code,
envisioning how a sequence of statements will behave, and pre-
dicting how a change to the code will result in a change in behav-
ior. Yet typical undergraduate curricula focus first and foremost
on writing programs: application and synthesis skills.
Many educators try to foster comprehension and analysis abilities
through code reading assignments or requiring students to ma-
nipulate and reason about non-code artifacts [12]. Buck and
Stucki propose an “inside/out” pedagogy for introducing CS1
concepts in a manner inspired by Bloom’s levels [4, 5]. While
this is a powerful approach in organizing assignments, their focus
has been on appropriately situating code writing tasks in a context
that constrains and directs students as they learn. Others have
added small analytical tasks to regular lab assignments [6].
To advance to reflection in action, however, students need more
than just an ability to predict how changes in code will result in
changes in behavior. In addition, they need continually rein-
forced practice in hypothesizing about the behavior of their pro-
grams and then experimentally verifying (or invalidating) their
hypotheses. Further, students need frequent, useful, and immedi-
ate feedback about their performance, both in forming hypotheses
and in experimentally testing them.
These activities are at the heart of software testing. To write an
effective test, students must do more than just come up with a
sequence of code actions—they must also hypothesize what re-
sulting behavior they expect. Yet, in most mainstream CS curric-
ula, students get little feedback on their performance in this area.
This idea is complementary to Buck and Stucki’s focus on the
middle levels of Bloom’s taxonomy—without mastering those
levels, students cannot effectively test. However, while mastering
those levels is necessary for a student to move toward reflection

in action, it is not sufficient. Basic software testing provides the
experience and setting for natural, recurring hypothesis testing
that is important for reflection in action.

At the same time, however, there are five perceived roadblocks
to adopting software testing practices in assignments:
1. Software testing requires experience at programming, and

may be something introductory students are not ready for
until they have mastered other basic skills.

2. Instructors just do not have the time (in terms of lecture
hours) to teach a new topic like software testing in an al-
ready overcrowded course.

3. The course staff already has its hands full assessing program
correctness—it may not be feasible to assess test cases too.

4. To learn from this activity, students need frequent, concrete
feedback on how to improve their performance at many
points throughout their development of a solution, rather
than just once at the end of an assignment. The resources for
rapid, thorough feedback at multiple points during program
writing just are not available in most courses.

5. Students must value any practices we require alongside pro-
gramming activities. A student must see any extra work as
helpful in completing working programs, rather than a hin-
drance imposed at the instructor’s desire, if we wish for stu-
dents to continue using a technique faithfully.

By combining a suitable testing technique with the right assess-
ment strategy, and supporting them with the right tools, including
an automated assessment engine, it is possible to overcome all
five of these difficulties.

3. TEST-DRIVEN DEVELOPMENT
To include software testing in student assignments, one must first
choose a testing approach in which students will be instructed.
Unfortunately, students are likely to view the software testing
methods in most student-oriented software engineering texts as
something that professional programmers do “out in the real
world” but that has little bearing on—and provides little benefit
for—the day-to-day tasks required of a student. In this case, the
practice of test-driven development (TDD) is a better pedagogical
match. TDD has been popularized by extreme programming [2].
TDD is a practical, concrete technique that students can practice
on their own assignments. In TDD, one always writes one or
more test cases before adding new code. The test cases capture
what behavior you are attempting to produce. Then, as you write
new code, these tests tell you when you have achieved your latest
(small) goal.
TDD is attractive for use in an educational setting for many rea-
sons. It is easier for students to understand and relate to than
more traditional testing approaches. It promotes incremental
development, promotes the concept of always having a “running
version” of the program at hand, and promotes early detection of
errors introduced by coding changes. It directly combats the “big
bang” integration problems that many students see when they
begin to write larger programs, where testing is saved until all the
code writing is complete. It dramatically increases a student’s
confidence in the portion of the code they have finished, and al-
lows them to make changes and additions with greater confidence
because of continuous regression testing. It increases the stu-

dent’s understanding of the assignment requirements, by forcing
them to explore the gray areas in order to completely test their
own solution. It also provides a lively sense of progress, because
the student is always clearly aware of the growing size of their
test suite and how much of the required behavior has already been
completed. Most importantly, students begin to see these benefits
for themselves after using TDD on just a few assignments.
The tool support that is available for TDD is also important. TDD
frameworks are readily available, including JUnit [10] for Java,
and related XUnit frameworks for other languages. Although
these frameworks are aimed at professional developers, similar
educational tool support is also becoming available. For example,
DrJava [1], which is designed specifically as a pedagogical tool
for teaching introductory programming, provides built-in support
to help students write JUnit-style test cases for the classes they
write. Similarly, BlueJ [11], another introductory Java environ-
ment designed specifically for teaching CS1, also provides sup-
port for JUnit-style tests. BlueJ allows students to interactively
instantiate objects directly in the environment without requiring a
separate main program to be written. Messages can be sent to
such objects using pop-up menus. BlueJ’s JUnit support allows
students to “record” simple object creation and interaction se-
quences as JUnit-style test cases. Such tools make it easy for
students to write tests from the beginning, and also mesh nicely
with an objects-first pedagogy.

4. AUTOMATED GRADING
Providing appropriate feedback and assessment of student per-
formance is critical. Many educators have used automated sys-
tems to assess and provide rapid feedback on large volumes of
student programming assignments, but past approaches focus on
the traditional view of program assessment—does the student
submission “produce the correct output.” Such a system has been
in use at Virginia Tech for many years with success. Unfortu-
nately, such tools often do little to address the issues raised here.
Instead, students focus on output correctness first and foremost;
all other considerations are a distant second at best (design, com-
menting, appropriate use of abstraction, testing one's own code,
etc.). This is due to the fact that the most immediate feedback
students receive is on output correctness, and also that students
are given a clear message (say, from a zero score) when submis-
sions do not compile, do not produce output, or do not terminate.
In addition, students are not encouraged or rewarded for perform-
ing testing on their own. In practice, students do less testing on
their own, often relying solely on instructor-provided sample data
and the automated grading system.
In order to make classroom use of TDD practical, the challenges
faced by existing automated grading systems must be addressed.
Web-CAT, the Web-based Center for Automated Testing, is a
new prototype tool developed at Virginia Tech for this purpose.
The Web-CAT Grader grades student code and student tests to-
gether, requiring both to be present on every submission [9]. It
places the burden of demonstrating correctness on the student, and
then uses an assessment formula that focuses on testing perform-
ance. The Web-CAT Grader assigns scores using three measures:
a score of code correctness, a score of test completeness with
respect to the code, and a score of test completeness and validity
with respect to the problem.

First, the code correctness score measures how “correct” the stu-
dent’s code is. To empower students in their own testing capa-
bilities, this score is based solely on how many of the student’s
own tests the submitted code can pass. No separate test data from
the instructor or teaching assistant is used in this score.

Second, the test completeness score with respect to the code
measures how thoroughly the student’s tests cover the student‘s
code. For Java code, the Web-CAT Grader uses Clover [7] to
instrument the student code. Coverage data is collected as student
tests are run. The instructor has the option of using method cov-
erage, statement coverage, branch coverage, or some mathemati-
cal combination to derive a measure of how thoroughly the stu-
dent’s code has been exercised by the student’s tests.

Third, the test completeness and validity score with respect to the
problem measures how thoroughly the student’s tests cover the
behavior required in the assignment. Mechanically, this is similar
to a more traditional program assessment—an instructor-provided
reference test suite that captures all essential behaviors is run
against the student program. However, if the student program
passes all the student tests, and the student tests provide reason-
able coverage of the student code, then the only reason any of the
reference tests can fail is because either (a) the corresponding
behavior is not implemented, and thus not tested for by the stu-
dent, or (b) one or more of the student-provided tests are inconsis-
tent with the behavior required in the assignment.

All three of these measures are taken on a 0%–100% scale, and
then multiplied together to produce a single composite score. As a
result, the score in each dimension becomes a “cap”—it is not
possible for a student to do poorly in one dimension but do well
overall. Also, a student cannot accept so-so scores across the
board. Instead, near-perfect performance in at least two dimen-
sions becomes the expected norm.

To support the rapid cycling between writing individual tests and
adding small pieces of code that is characteristic of TDD, the
Web-CAT Grader allows unlimited submissions from students up
until the assignment deadline. Students can get feedback any time,
as often as they wish. However, their program correctness is only
assessed by the tests they have written, so to find out more about
errors in their own programs, a student must write the correspond-
ing test cases. Currently, the Web-CAT Grader also applies
Checkstyle and PMD, two industrial-quality static analysis tools,
to assess how well the student has conformed to expected coding
conventions, and all such feedback is produced in one seamless
source code markup report viewable by the student on the web.

5. EXPERIENCES IN A JUNIOR COURSE
This approach has been piloted using an early version of Web-
CAT in CS 3304: “Comparative Languages,” a typical junior-
level programming languages course at Virginia Tech. Students
in the course normally write four program assignments, each re-
quiring two to three weeks to complete. Basic instruction in TDD
was provided to students, consisting of about one lecture hour of
course time and several reading assignments outside of class.
In spring 2003, 59 students in the course used Web-CAT to sub-
mit all programming assignments. These students were given the
same assignments used during the Spring 2001 offering of the
course, where a conventional output-correctness-based automated
grading system was used without TDD (students were still in-

structed to test their own code before submission and given edu-
cational materials on basic testing practices). 59 students com-
pleted the course during spring 2001. Program submissions from
both semesters were then available for detailed analysis. After
assignments were turned in, the final submission of each student
in both semesters was analyzed. This analysis was restricted to
the first programming assignment due to manpower limitations.
Table 1 summarizes the results obtained when comparing the
program submissions between the two groups. Because Web-
CAT and the earlier grading system called the Curator use differ-
ent grading approaches, the spring 2001 submissions were also
submitted through Web-CAT for scoring. In spring 2001, how-
ever, students did not write test cases. Rather than using a fixed
set of instructor-provided test data, the 2001 programs were
graded using a test data generator provided by the instructor. This
generator produced a random set of 40 test cases for each submis-
sion, providing broad coverage of the entire problem. To re-score
each 2001 submission using Web-CAT, the generator-produced
test cases originally produced for grading that submission in 2001
were submitted as if they were produced by the student.
In Table 1, “Recorded grades” represents the average final as-
signment score recorded in the instructor’s grade book. Half of
each score came from the automated assessment and half from an
independent review of the student’s source code by a graduate
teaching assistant. “TA assessment” reflects the average amount
of credit received for the TA portion of the student’s grade. “Cu-
rator assessment” reflects the average amount of credit given by
the traditional automated grading approach, while the “Web-CAT
assessment” is the amount of credit given by the new automated
assessment prototype tool.
While the “Curator assessment” average for 2003 students is
slightly higher than that for 2001 students, the difference is not
statistically significant. One possible interpretation for this situa-
tion is that, if any difference exists between the code produced by
the two groups, the assessment approach used in 2001 was not
sensitive enough to detect it. The “Web-CAT assessment” differ-
ences are significant, however. This result is understandable,
since students in 2003 were given explicit feedback about how
thoroughly they were testing all aspects of the problem specifica-
tion, and thus had an opportunity to maximize the completeness
of their tests to the best of their ability.
Finally, the student programs were analyzed to uncover the bugs
they contained. One of the most common ways to measure bugs
is to assess defect density, that is, the average number of defects
(or bugs) contained in every 1000 non-commented source lines of

code (KSLOC). On large projects, defect density data can often
be collected by analyzing bug tracking databases. For student
programs, however, measuring defects can be more difficult.
To provide a uniform treatment in this experiment, a comprehen-
sive test suite was developed for analysis purposes. A suite that
provided 100% condition/decision coverage on the instructor’s
reference implementation was the starting point. Then all test
suites submitted by 2003 students and all randomly generated
suites used to grade 2001 submissions were inspected, and all
non-duplicating test cases from this collection were added to the
comprehensive suite. For this experiment, two test cases are “du-
plicating” if each program in each of the student groups produces
the same result (pass or fail) on both test cases. Non-duplicating
test cases are thus “independent” for at least one program under
consideration, but may provide redundant coverage for others.
Once the comprehensive test suite was constructed, every pro-
gram under consideration was run against it.
While the resulting numbers capture the relative number of de-
fects in programs, they do not represent defect density. To get
defect density information, a selection of 18 programs were se-
lected, 9 from each group. These programs had all comments and
blank lines stripped from them. They were then debugged by
hand, making the minimal changes necessary to achieve a 100%
pass rate on the comprehensive test suite. The total number of
lines added, changed, or removed, normalized by the program
length, was then used as the defects per KSLOC measure for that
program. A linear regression was performed to look for a rela-
tionship between the defects/KSLOC numbers and the raw num-
ber of test cases failed from the comprehensive test suite in this
sample population. This produced a correlation significant at the
0.05 level, which was then used to estimate the defects/KSLOC
for the remaining programs in the two student groups.
Table 1 summarizes the results of this analysis, which show that
students who used TDD and Web-CAT submitted programs con-
taining approximately 45% fewer defects per 1000 lines of code.
While the defects/KSLOC rates shown here are far above indus-
trial values, with values often cited around 4 or 5 defects/KSLOC,
this is to be expected for student-quality code developed with no
process control and no independent testing.
While the results summarized in Table 1 indicate that students do
produce higher quality code using this approach, it is also impor-
tant to consider how students react to TDD and Web-CAT. The
2003 students completed an anonymous survey designed to elicit
their perceptions of both the process and the prototype tool. All
students in the spring 2003 semester had used an automated grad-

Table 1: Score comparisons between both groups (bold differences are significant).

Comparison Spring 2001
Without TDD

Spring 2003
With TDD

t-score Assuming Un-
equal Variances

Critical t-value
p = 0.05

Recorded grades 90.2% 96.1% t(df = 62) = 2.67 2.00
TA assessment 98.1% 98.2% t(df = 65) = 0.06 2.00
Curator assessment 93.9% 96.4% t(df = 71) = 1.36 1.99
Web-CAT assessment 76.8% 94.0% t(df = 61) = 4.98 2.00
Time from first submission until
assignment due 2.2 days 4.2 days t(df = 112) = 3.15 1.98

Test case failures from master
suite (out of 1064)

390 (36.7%) 265 (24.9%) t(df = 84) = 3.48 1.99

Estimated Defects/KSLOC 70.0 38.3

ing/submission system before (the Curator). Students expressed a
strong preference for Web-CAT over their past experiences.
They found that Web-CAT was more helpful at detecting errors in
their programs than the Curator (89.8% agree or strongly agree).
In addition, they believed it provided excellent support for TDD
(83.7% agree or strongly agree).
Students also expressed a strong preference for the benefits pro-
vided by TDD. Using TDD increases the confidence that students
have in the correctness of their code (65.3% agree or strongly
agree). Using TDD also increases the confidence that students
have when making changes to their code (67.3% agree or strongly
agree). Finally, most students would like to use Web-CAT and
TDD for program assignments in future classes, even if it were
not required for that course (73.5% agree or strongly agree).

6. EXPERIENCES IN CS1
As a result of experiences with this approach at the junior level, it
is now being integrated into Virginia Tech’s core curriculum.
The fall 2003 semester began with incoming freshmen in CS1
writing basic tests of their own code in the very first laboratory
session during the first week of classes. CS1 is taught in Java
using BlueJ. Students are taught using an aggressive objects-first
pedagogy, and begin with a variation of Bergin’s Karel J. Robot
simulator [3] for initial assignments. Bergin’s implementation
allows students to write pure Java programs using a provided
Karel class library, and also provides support for JUnit-style test-
ing. With minimal introduction to testing concepts, students read-
ily use BlueJ to interactively instantiate objects, and then interac-
tively “record” sequences of actions—and assertions about ex-
pected outcomes—as test cases. Finally, the Web-CAT Grader
supports BlueJ’s assignment submission abilities, so a student can
send an assignment to the grading system just using a menu entry
in their IDE, with the results popping up in their web browser.
To date, the experience has been quite positive. Allowing unlim-
ited submissions, with a web-viewable, color-highlighted feed-
back report available in less than a minute, encourages frequent
use by students. Further, students readily grasp the up-front em-
phasis that the assessment strategy gives to testing, and their natu-
ral pursuit of higher scores reinforces the desired skills. The sim-
plicity of the tools does make this accessible, even at the CS1
level, and with minimal class time devoted to teaching testing
concepts. The natural benefits that students see, together with the
assessment approach, drives their use of the technique.

7. CONCLUSION
Despite the best efforts of computer science educators, CS stu-
dents often do not acquire the desired analytical thinking skills
that they need to be successful until later than we would like, if at
all. It is possible to infuse continual practice and development of
comprehension, analysis, and hypothesis-testing skills across the
programming assignments in a typical CS curriculum using TDD
activities. Using automated grading and feedback generation to
provide for frequent, quick-turnaround assessments of student
performance helps to encourage and reinforce desired behaviors.
Furthermore, students see real benefits from using this approach,
an important factor for its continued use across multiple courses.
Preliminary experience with TDD in the classroom and with
automated assessment is very positive, indicating a significant
potential for increasing the quality of student code. We plan to

assess the outcomes of apply this technique in our introductory
programming sequence to better characterize its impact.

8. ACKNOWLEDGMENTS
This work is supported in part by the National Science Founda-
tion under grant DUE-0127225, and by a research fellowship
from Virginia Tech’s Institute for Distance and Distributed Edu-
cation. Any opinions, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of NSF or IDDL.

9. REFERENCES
[1] Allen, E., Cartwright, R., and Stoler, B. DrJava: a light-

weight pedagogic environment for Java. In Proc. 33rd SIG-
CSE Technical Symp. Computer Science Education, ACM,
2002, pp. 137-141.

[2] Beck, K. Test-Driven Development: By Example. Addison-
Wesley, Boston, MA. 2003.

[3] Bergin, J., Stehlik, M., Roberts, J., Pattis, R. Karel J. Robot:
A Gentle Introduction to the Art of Object-Oriented Pro-
gramming in Java. Unpublished manuscript available at:
<http://csis.pace.edu/~bergin/KarelJava2ed/>

[4] Buck, D., and Stucki, D.J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development. In Proc. 31st SIGCSE
Technical Symp. Computer Science Education, ACM, 2000,
pp. 75-79.

[5] Buck, D., and Stucki, D.J. JKarelRobot: a case study in
supporting levels of cognitive development in the computer
science curriculum. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 16-20.

[6] Comer, J., and Roggio, R. Teaching a Java-based CS1
course in an academically-diverse environment. In Proc.
33rd SIGCSE Technical Symp. Computer Science Education,
ACM, 2002, pp. 142-146.

[7] Cortex, Inc. Clover: a code coverage tool for Java. Web
page accessed Mar. 21, 2003:
<http://www.thecortex.net/clover/>

[8] Decker, R. and Hirshfield, S. The top 10 reasons why ob-
ject-oriented programming can’t be taught in CS 1. In Proc.
25th Annual SIGCSE Symp. Computer Science Education,
ACM, 1994, pp. 51-55.

[9] Edwards, S.H. Rethinking computer science education from
a test-first perspective. In Addendum to the 2003 Proc. Conf.
Object-oriented Programming, Systems, Languages, and Ap-
plications, ACM, to appear.

[10] JUnit Home Page. Web page last accessed Mar. 21, 2003:
<http://www.junit.org/>

[11] Kölling, M. BlueJ—The Interactive Java Environment.
Web page, last accessed Mar. 21, 2003:
<http://www.bluej.org/>

[12] Krause, K.L. Computer science in the Air Force Academy
core curriculum. In Proc.13th SIGCSE Technical Symp.
Computer Science Education, ACM, 1982, pp. 144-146.

[13] Schön, D. The Reflecting Practitioner: How Professionals
Think in Action. London: Temple Smith, 1983.

