
Rethinking Computer Science Education from a Test-first
Perspective

 Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
Despite our best efforts and intentions as educators, student pro-
grammers continue to struggle in acquiring comprehension and
analysis skills. Students believe that once a program runs on
sample data, it is correct; most programming errors are reported
by the compiler; when a program misbehaves, shuffling state-
ments and tweaking expressions to see what happens is the best
debugging approach. This paper presents a new vision for com-
puter science education centered around the use of test-driven
development in all programming assignments, from the beginning
of CS1. A key element to the strategy is comprehensive, auto-
mated evaluation of student work, in terms of correctness, the
thoroughness and validity of the student’s tests, and an automatic
coding style assessment performed using industrial-strength tools.
By systematically applying the strategy across the curriculum as
part of a student’s regular programming activities, and by provid-
ing rapid, concrete, useful feedback that students find valuable, it
is possible to induce a cultural shift in how students behave.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools.

General Terms
Verification.

Keywords
Pedagogy, test-driven development, laboratory-based teaching,
CS1, extreme programming.

1. INTRODUCTION
Many educational institutions are undergoing significant curricu-
lum changes as they embrace object orientation, often opting for
an aggressive objects-first strategy for its pedagogical value [25,

32, 26, 6]. Yet, while such changes offer the promise of eliminat-
ing the paradigm shift that would face students who receive initial
training in procedural programming, other age old difficulties
remain [28, 15]. Particularly during freshman and sophomore
courses, and occasionally much later, a student may believe that
once the code she has written compiles successfully, the errors are
gone. If the program runs correctly on the first few runs she tries,
it must be correct. If there is a problem, maybe by switching a
few lines around or tweaking the code by trial and error, it can be
fixed. Once it runs on the instructor-provided sample data, her
program is correct and the assignment is complete. Even worse,
students are often able to succeed at simpler CS1 and CS2 as-
signments without developing a broader view, which only rein-
forces approaches that will handicap their performance in more
advanced courses.

The reason for this, as described by Buck and Stucki [9, 10], is
that most undergraduate curricula focus on developing program
application and synthesis skills (i.e., writing code), primarily
acquired through hands-on activities. In addition, students must
master basic comprehension and analysis skills [8]. Students
must be able to read and comprehend source code, envision how a
sequence of statements will behave, and predict how a change to
the code will result in a change in behavior. Students need ex-
plicit, continually reinforced practice in hypothesizing about the
behavior of their programs and then experimentally verifying (or
invalidating) their hypotheses. Further, students need frequent,
useful, and immediate feedback about their performance, both in
forming hypotheses and in experimentally testing them.

To this end, I propose a new vision for laboratory and program-
ming assignments across the entire CS curriculum inspired by
test-first development [4, 3]. From the very first programming
activities in CS1, a student should be given the responsibility of
demonstrating the correctness of his or her own code. Such a
student is expected and required to submit test cases for this pur-
pose along with the code, and assessing student performance in-
cludes a meaningful assessment of how correctly and thoroughly
the tests conform to the problem. The key to providing rapid,
concrete, and immediate feedback is an automated assessment
tool to which students can submit their code. Such a tool should
do more than just give some sort of “correctness” score for the
student’s code. In addition, it should:

• Assess the validity of the student’s tests, giving feedback
about which tests are incorrect.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
OOPSLA ’03, October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

• Assess the completeness of the student’s tests, giving an
indication of how to improve.

• Assess the style of the student’s code, giving feedback about
where improvements can be made.

• Assess the quality of the student’s code, giving suggestions
for improvement or drawing attention to potential problems.

This paper describes a vision of a test-first-inspired educational
strategy: systematically supporting test-first programming from
the beginning to ensure students acquire the necessary compre-
hension and analysis skills needed to support effective program-
ming. It also describes a practical, feasible approach to providing
automated feedback that students can really use. This approach
will work even for very early programming assignments in CS1
classes, and naturally meshes with existing tools for teaching in
an objects-first style. By systematically adopting such an assess-
ment approach across the curriculum, it will be possible to induce
a cultural shift in how students behave when completing pro-
gramming assignments and what they expect to get out of the
process.

Section 2 lays out the details of test-first assignments and their
assessment, while Section 3 uses this foundation to describe a
new vision for CS education. Related work is described in Sec-
tion 4, with conclusions appearing in Section 5.

2. TEST-FIRST ASSIGNMENTS
Others have suggested that more software engineering concepts in
general [29, 30] and software testing skills in particular [38, 20,
21, 22, 16] should be integrated across the undergraduate CS cur-
riculum. Providing upper-division elective courses on such topics
is helpful, but has little influence on the behaviors students prac-
tice throughout their academic endeavors. Instead, a student can
easily view the software engineering practices in most student-
oriented texts as something that professional programmers do “out
in the real world” but that has little bearing on—and provides
little benefit for—the day-to-day tasks required of a student.
Practicing test-driven development (TDD) across the curriculum
is an interesting alternative. In TDD, one always writes a test case
(or more) before adding new code. New code is only written in
response to existing test cases that fail. By constantly running all
existing tests against a unit after each change, and always phras-
ing operational definitions of desired behavior in terms of new
test cases, TDD promotes incremental development and gives a
programmer a great degree of confidence in the correctness of
their code. While TDD is a practical, concrete technique that stu-
dents can practice on their own assignments.
The idea of using TDD in the classroom is not revolutionary [2].
Instead, the real issue is how to overcome its potential pitfalls: the
approach must be systematically applied across the curriculum in
a way that makes it an inherent part of the programming activities
in which students participate, and students must receive frequent,
directed feedback on their performance that provides the student
with clear benefits. The key to resolving these issues is a power-
ful strategy for assessing student performance.

2.1 Automated Grading
Providing appropriate feedback and assessment of student per-
formance is the critical factor in the success of this vision. In-

structors and teaching assistants are already overburdened with
work. Doubling their workload by requiring them to assess test
data as well as program code will never work. This issue is even
more critical for a curriculum-wide transformation. The only
practical answer is automation.
Many educators have used automated systems to assess and pro-
vide rapid feedback on large volumes of student programming
assignments [19, 23, 31, 35, 18]. While these systems vary, they
typically focus on compilation and execution of student programs
against some form of instructor-provided test data. Indeed, Vir-
ginia Tech uses its own automated grading system for student
programs and has seen powerful results.
In spite of its classroom utility, an automatic grading strategy like
the one embodied in the Curator also has a number of shortcom-
ings. Most importantly, students focus on output correctness first
and foremost; all other considerations are a distant second at best
(design, commenting, appropriate use of abstraction, testing one's
own code, etc.). This is due to the fact that the most immediate
feedback students receive is on output correctness, and also that
the Curator will assign a score of zero for submissions that do not
compile, do not produce output, or do not terminate. In addition,
students are not encouraged or rewarded for performing testing on
their own. In practice, students do less testing on their own, often
relying solely on instructor-provided sample data and the auto-
mated grading system. Clearly, existing approaches to automatic
grading of student programs will not work.

2.2 TDD-oriented Assessment
Instead of automating an assessment approach that focuses on the
output of a student’s program, instead we must focus on what is
most valuable: the student’s testing performance. The assessment
approach should require a student test suite as part of every sub-
mission, and encourage students to write thorough tests. It should
also support TDD by encouraging the rapid cycling of “write a
little test, write a little code.”
Virginia Tech has developed a prototype grading system to ex-
plore the possibilities in this direction, and has experimented with
these techniques in the classroom with positive results. The pro-
totype is a service provided by Web-CAT, the Web-based Center
for Automated Testing.
Suppose a student is developing a programming assignment in
Java. The student can prepare test cases in JUnit format [24].
The source files for the program and tests can be submitted to the
Web-CAT Grader. Upon receipt, the student’s submission is
compiled and then assessed along four dimensions: correctness,
test completeness, test validity, and code quality.
Assessing “correctness” is entirely the student’s responsibility,
and the percentage of student-written tests passed by the student’s
code is used for this measure. Student code is also instrumented
to gather code coverage instrumentation, using a tool such as
Clover [14]. The instructor can choose an appropriate coverage
metric for the difficulty level of the course, and code coverage
can be used as a measure of how thoroughly the student as tested
the submitted code. Further, the instructor may wish to provide a
separate reference test set—the percentage of tests in this refer-
ence set that are passed by the student submission can be used as
an indicator of how thoroughly the student has tested all the be-
havior required in the problem.

Test validity is assessed by running the student tests against an
instructor-provided reference implementation. In cases where the
class design for the student’s submission is tightly constrained,
this may include unit-level test cases. As students move on to
more comprehensive assignments, the test cases can be parti-
tioned into those that test top-level program-wide behavior and
those that test purely internal concerns. Only top-level test cases
that capture end-to-end functionality are validated against the
instructor’s reference implementation.
Finally, industrial quality static analysis tools such as Checkstyle
[11] and PMD [34] can assess how well the student has con-
formed to the local coding style conventions as well as spot po-
tentially error-prone coding issues. Together, Checkstyle and
PMD provide many dozens of fully automated checks for every-
thing from indentation, brace usage, and presence of JavaDoc
comments to flagging unused code, inappropriate object instantia-
tions, and inadvisable coding idioms like using assignment opera-
tors in sub-expressions. The instructor has full control over which
checks are enabled, which checks result in scoring deductions,
and more.
To support the rapid cycling between writing individual tests and
adding small pieces of code, the Web-CAT Grader will allow
unlimited submissions from students up until the assignment
deadline. Students can get feedback any time, as often as they
wish. However, their score is based in part on the tests they have
written, and their program performance is only assessed by the
tests they have written. As a result, to find out more about errors
in their own programs, it will be necessary for the student to write
the test cases. The feedback report will graphically highlight the
portions of the student code that are not tested so that the student
can see how to improve. Other coding or stylistic issues will also
be graphically highlighted.

2.3 But Can It Be Used Across the Board?
While the idea of automatically assessing TDD assignments is
exciting, it also raises questions when one proposes to apply it
curriculum-wide. The two biggest questions are: can beginning
students use it from the start of their first class, and will it work
on graphically-oriented programs?
First, consider beginning students. Most automated grading sys-
tems, including the current system in use at Virginia Tech, were
designed to help cope with the large volumes of students in intro-
ductory-level classes. The previous Curator system has been in
use in our CS1 course for many years and has not caused issues in
that regard. So the real question is whether or not students can
write test cases from the start of CS1.
Interestingly, DrJava [1], which is designed specifically as a peda-
gogical tool for teaching introductory programming, provides
built-in support to help students write JUnit-style test cases for the
classes they write. Similarly, BlueJ [25, 26, 27], another intro-
ductory Java environment designed specifically for teaching CS1,
also supports JUnit-style tests. BlueJ allows students to interac-
tively instantiate objects directly in the environment without re-
quiring a separate main program to be written. Messages can be
sent to such objects using pop-up menus. BlueJ’s JUnit support
allows students to “record” simple object creation and interaction
sequences as JUnit-style test cases. Such tools make it easy for
students to write tests from the beginning.

Further, the scoring formula used to grade introductory assign-
ments by beginners will most likely be different than that used for
more advanced students. To start, the instructor may wish to only
require method-level coverage of beginning students (i.e., each
method is executed at least once). As students grasp the concept
and develop experience applying the feedback they receive, grad-
ing stringency can be gradually increased.
But will this technique work for graphically-oriented programs?
As long as a batch-oriented test execution scheme can be devised,
the solution is appropriate. Buck and Stucki describe a simple
approach for achieving the same end with graphically-oriented
student programs [9]. By fixing the interface between the GUI
and the underlying code, the GUI can be replaced by an alternate
driver during testing. Instructors who use custom GUI libraries
designed for educational use can augment them with additional
support for test automation if needed. We have successfully ap-
plied automated grading techniques to a variety of courses from

import cs1705.*;

/**
 * MyRobot adds three basic capabilities to a
 * robot: the ability to turn right, turn com-
 * pletely around, and pick up a row of beepers.
 */
public class MyRobot
 extends VPIRobot
{
 //--
 /** Construct a new MyRobot object.
 */
 public MyRobot()
 {
 }

 public void turnRight()
 {
 turnLeft();
 turnLeft();
 turnLeft();
 }

 //--
 /** Reverse direction with a 180-degree turn
 */
 public void turnAround()
 {
 turnLeft();
 turnLeft();
 }

 //--
 /** March along a line of beepers, picking up
 * each in turn.
 */
 public void collectBeepers()
 {
 while (nextToABeeper());
 {
 pickBeeper();
 if (frontIsClear())
 {
 move();
 }
 }
 }
}

Figure 1. A simple student program.

the freshman through the junior level with success, including
some courses that use graphically-oriented projects.

2.4 An Example
To show how TDD assignments work, consider a case that pushes
the boundaries: a freshman in CS1 is learning the basics of pro-
gramming on a graphically oriented assignment. Many institu-
tions use variations of Karel the Robot because of the consistent
and intuitive metaphor it provides to introductory students. There
are several Java versions of Karel the Robot [5, 7, 10], some of
which allow student to “program” Karel by writing pure Java.
Karel is a simple mobile robot that navigates in a two-dimensional
grid-based world. Karel supports a simple set of messages to
move forward, detect walls directly in front of him, turn left, and
pick up or put down small beepers in his environment. Students
can easily grasp the concept of Karel as well as the basic opera-
tions he provides, and their programs are easily animated in a
graphical window to visualize the robot’s actions.
Figure 1 shows the source code for a hypothetical Karel assign-
ment: create a robot that provides three new capabilities: turning
right (the base robot only knows how to turn left!), reversing di-
rection, and picking up a sequence of beepers. A student com-
pleting this assignment may begin with a sample robot class in a
text book or provided by the instructor.
What kind of test case might a CS1 student write for this assign-
ment? Suppose the student is working on gathering beepers first.
Figure 2 shows a simple JUnit-style test case that might be cre-
ated as a student works on collectBeepers(). The student
might even create this sequence interactively and record it as a
test case using their educational IDE. The student could then
submit code and test case together for assessment. The student
could continue to develop test cases for each new feature or
change, using repeated submissions to get feedback on his or her
progress.
Figure 3 depicts the feedback report the student would receive
from the Web-CAT Grader. This report is for a submission where
all of the student’s tests pass. It shows a summary of the correct-
ness and testing assessment, which in this example is taken from
the Clover code coverage measure—the number of methods exe-
cuted in this case, since students for this assignment are not yet
ready for more stringent requirements. The bar graphs in the
report were inspired in part by JUnit's GUI TestRunner: “when
the bar is green the code is clean.”
Figure 3 also shows a summary of the stylistic assessment, where
points have been deduced for stylistic or coding errors. There is
also room for a design and readability score from the TA or in-
structor. In this example, the code has not yet been manually
assessed. Further, a more detailed breakdown lists each class in
the submission separately, showing the number of comments or
remarks on the corresponding source file, the points lost attribut-
able to that class, and a summary of how thoroughly that particu-
lar class has been tested. By showing the basic testing coverage
achieved for each component in this way, the top-level summary
indicates to the student where more effort can be productively
spent to improve their understanding of the code and to ensure it
operates correctly. This list is initially sorted by the number of

comments received, although the student can resort the list using
other criteria if desired.
The student can click on a class name to view the suggestions and
comments on that portion of his or her code. Figure 4 shows an
example screen shot of “marked up” source code that the student
will see. The basic form of the report is produced by Clover, and
each source file is viewble in pretty-printed form with color-
highlighted markup and embedded comments or remarks. This
top-level summary shows the basic testing coverage achieved for
each component, indicating to the student where more effort can
be productively spent to improve their understanding of the code
and ensure it operates correctly.
From this summary, individual reports for each file in the submis-
sion can be obtained, as exemplified in Figure 4. Clover auto-
matically highlights lines that have not been executed during test-
ing in pink to graphically indicate where more testing needs to be
performed. In addition, an execution count for each line is listed
next to the line number on the left. Hovering the mouse over such
lines pops up more detailed information about the amount of full
or partial coverage achieved on troublesome lines.
In addition, comments from static checking tools (e.g., Checkstyle
and PMD) have been folded into this unified report. Lines high-
lighted in red indicate stylistic or coding issues resulting in point
deductions. In Figure 4, line 18 is so marked, and the correspond-
ing message is shown immediately below the line, in this case
indicating that the method is missing a descriptive comment.
Alternate colors and icons are used to denote warnings, sugges-
tions, good comments from the TA or instructor, and extra credit
items.

import cs1705.*;

public class MyRobotTests
 extends junit.framework.TestCase
{
 MyRobot karel;
 World world;

 protected void setUp()
 {
 // Read in a world config containing
 // a line of beepers at karl’s start loc
 World.startFromFile("beeperTest.kwld");
 karel = new MyRobot();
 world = karel.getWorldAsObject();
 }

 //--
 /** Check that after calling collectBeepers(),
 * there are no more beepers left.
 */
 public void testCollectBeepers()
 {
 karel.collectBeepers();
 karel.turnAround();
 karel.turnOff();
 karel.assertBeepersInBeeperBag();
 world.assertNoBeepersInWorld();
 }
}

Figure 2. A simple test case for MyRobot.

In Figure 4, line 40 is also highlighted as an error, with two asso-
ciated messages. The execution count next to the line number
indicates that lots of processing time was spent here—the acci-
dental infinite loop was terminated by the execution time limit
imposed for this assignment. The messages draw attention to the
misplaced semicolon, helping to solve the issue in this case.
The Web-CAT Grader also provides an interface for TAs to re-
view assignments. Using a direct manipulation interface, com-
ments resulting from manual grading can be directly entered via a
web browser. TA comments entered this way will be visible to
the student just as tool-generated comments.

2.5 How Are Students Affected?
TDD is attractive for use in education for many reasons. It is
easier for students to understand and relate to than more tradi-
tional testing approaches. It promotes incremental development,
promotes the concept of always having a “running (if incomplete)
version” of the program on hand, and promotes early detection of
errors introduced by coding changes. It directly combats the “big
bang” integration problems that many students see when they
begin to write larger programs, when testing is saved until all the
code writing is complete. It increases a student’s confidence in
the portion of the code they have finished, and allows them to
make changes and additions with greater confidence because of

continuous regression testing. It increases the student’s under-
standing of the assignment requirements, by forcing them to ex-
plore the gray areas in order to completely test their own solution.
It also provides a lively sense of progress, because the student is
always clearly aware of the growing size of their test suite and
how much of the required behavior is already “in the bag” and
verified.
Most importantly, students begin to see these benefits for them-
selves after using TDD on just a few assignments. The Web-CAT
Grader prototype and TDD have been used in a junior-level class.
Compared to prior offerings of the class using a more traditional
automated grading approach, students using TDD are more likely
to complete assignments, are less likely to turn assignments in
late, and receive higher grades. Empirically, it also appears that
student programs are more thoroughly tested (in terms of the
branch coverage their test suites achieve on a reference imple-
mentation) than when using the previous automated grading sys-
tem.

3. A NEW VISION FOR CS EDUCATION
Given the example in Section 2.4, it is clear that TDD-based as-
signments with comprehensive, automated assessment are feasi-
ble, even for introductory students. In addition, this strategy can
be combined easily with many recent advances in CS pedagogy.

Figure 3. The score summary a student receives for a submission.

Students can be taught using an objects-first style [5, 6, 12, 13,
37, 32], and introduced to programming using metaphorical sys-
tems like Karel the Robot [7, 13, 37]. Role-playing activities [7]
can be used to introduce OO concepts and act out testing tasks.
Closed laboratory sessions can be used to provide more hands-on
learning. Pair programming can be used in closed labs to increase
peer-to-peer learning and also to foster comprehension and analy-

sis skills [33, 39]. Bloom’s taxonomy can be used to plan the
order in which topics are introduced and the manner in which
programming tasks are framed as students progress in their abili-
ties [9, 10].
As students gain more skill from early courses, requirements for
test thoroughness can be increased. Unlike prior automated grad-
ing systems that tend to inhibit student creativity and enforce

Figure 4. Style and coding suggestions for one student source file.

strict conformance to an unwavering assignment specification, the
TDD approach more readily allows open-ended assignments such
as those suggested by Roberts [36]. If a student wishes to do
more work or implement more features, they can still write their
own internal tests. As long as they also implement the minimum
requirements for the assignment as embodied in the instructor’s
reference test suite, their submission will be graded on the thor-
oughness of their own testing against their enhanced solution.
After students have used TDD techniques across several classes, it
will become the cultural norm for behavior, not just an extra re-
quirement that one instructor imposes and that can be “thrown
away” after his or her class has been passed. The goal is to foster
this cultural shift for pedagogical ends. By continually requiring
students to test in the small, every time they add or change a piece
of code, they are also continually practicing and increasing their
skills at hypothesizing what the behavior should be and then op-
erationally testing those hypotheses. This will truly bring the
“laboratory” nature of computer science training to the fore if this
vision is adopted across an institution’s curriculum.

4. RELATED WORK
The vision described here builds on a large body of prior work.
Infusing software engineering issues and concerns across the un-
dergraduate curriculum has been discussed at SIGCSE on several
occasions [17, 29, 30]. TDD and other extreme programming
ideas have even been used in the classroom [2]. This idea is com-
plementary to the test-first assignment strategy described here.
The main difference is that the TDD strategy focuses on opera-
tional techniques that provide clear benefits to students in a way
that is natural part of the programming process and that can be
applied across the curriculum.
The idea of including software testing activities across the cur-
riculum has also been proposed by others [16, 20]. Jones has
described some experiences in this direction [21, 22]. While
Jones has used a traditional automated grading system for assess-
ing student work [23], his system is similar to others in that it
focuses on assessing program correctness first and foremost. This
paper proposes TDD rather than more traditional testing tech-
niques and focuses specifically on the unique assessment issues
necessary for fostering a positive cultural change in student be-
havior.
Automated grading has also been discussed in the educational
literature [19, 35, 18]. Unfortunately, most such systems are of
the “home brew” variety and see little or no use outside their
originating institution. Further, virtually all focus on output cor-
rectness as the sole assessment criterion. Mengel describes ex-
periments in using metrics-based techniques to assess style [31].
Here, the intent is to use of industrially proven tools. By install-
ing and configuring these tools on a server and combining them
with a unified feedback format, students can readily take advan-
tage of the information they provide without being exposed to the
hassles of installing and learning to use the tools.

5. CONCLUSION
Despite the best efforts of computer science educators, CS stu-
dents often do not acquire the desired analytical skills that they
need to be successful until later than we would like, if at all. Re-
assessing typical computer science education practices from a
test-first perspective leads one to focus on programming activities

and how they are carried out. It is possible to infuse continual
practice and development of comprehension and analysis skills
across the programming assignments in a typical CS curriculum
using TDD activities. Providing a system for rapid assessment of
student work, including both the code and the tests they write, and
ensuring concrete, useful, and timely feedback, is critical. In
addition to assessing student performance, students can get real
benefits from using the approach, and these benefits are important
for students to internalize and use the approach being advocated.
Using TDD across the board can serve as the core for a broader
vision of re-engineering programming practices across the CS
curriculum. The goal is to develop a culture where students are
expected to test their own code (that is, apply analytical and code
understanding skills on a daily basis), and where it is an accepted
part of life across all of a student's courses. Instead of being the
exception—i.e., testing is something students do in one class fo-
cused on the topic—testing one's own code will become the norm.
As students become inculcated with this expectation, it is possible
to emphasize testing across the curriculum as a natural part of
existing classes, without requiring extra class time or lecture ma-
terials. The hope captured in this vision is that students will ac-
quire better skills for a variety of programming tasks, that instruc-
tors and TAs will be able to devote more attention to design as-
sessment (because simple stylistic, correctness, and testing issues
are automatically assessed), and thus more teaching time and
effort can go into the deeper issues that all students must master
once they conquer their programming fundamentals.

6. ACKNOWLEDGMENTS
This work is supported in part by the Virginia Tech Institute for
Distance and Distributed Learning and by the National Science
Foundation under grant DUE-0127225. Any opinions, conclu-
sions or recommendations expressed in this paper are those of the
author and do not necessarily reflect the views of the NSF. I wish
to acknowledge the feedback provided by Manuel Pérez-
Quiñones on these ideas, and the students who have worked on
the project: Anuj Shah, Amit Kulkarni, and Gaurav Bhandari.

7. REFERENCES
[1] Allen, E., Cartwright, R., and Stoler, B. DrJava: a light-

weight pedagogic environment for Java. In Proc. 33rd SIG-
CSE Technical Symp. Computer Science Education, ACM,
2002, pp. 137-141.

[2] Allen, E., Cartwright, R., and Reis, C. Production program-
ming in the classroom. In Proc. 34th SIGCSE Technical
Symp. Computer Science Education, ACM, 2003, pp. 89-93.

[3] Beck, K. Aim, fire (test-first coding). IEEE Software, 18(5):
87-89, Sept./Oct. 2001.

[4] Beck, K. Test-Driven Development: By Example. Addison-
Wesley, Boston, MA. 2003.

[5] Becker, B.W. Teaching CS1 with Karel the Robot in Java.
In Proc. 32nd SIGCSE Technical Symp. Computer Science
Education, ACM, 2001, pp. 50-54.

[6] Bergin, J., et al. Resources for next generation introductory
CS courses: report of the ITiCSE’99 working group on re-
sources for the next generation CS 1 course. ACM SIGCSE
Bulletin, 31(4): 101-105.

[7] Bergin, J., Stehlik, M., Roberts, J., Pattis, R. Karel J. Robot:
A Gentle Introduction to the Art of Object-Oriented Pro-

gramming in Java.
http://csis.pace.edu/~bergin/KarelJava2ed/

[8] Bloom, B.S., et al. Taxonomy of Educational Objectives:
Handbook I: Cognitive Domain. Longmans, Green and Co.,
1956.

[9] Buck, D., and Stucki, D.J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development. In Proc. 31st SIGCSE
Technical Symp. Computer Science Education, ACM, 2000,
pp. 75-79.

[10] Buck, D., and Stucki, D.J. JKarelRobot: a case study in
supporting levels of cognitive development in the computer
science curriculum. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 16-20.

[11] Checkstyle home page. http://checkstyle.sourceforge.net/.
[12] Comer, J., and Roggio, R. Teaching a Java-based CS1

course in an academically-diverse environment. In Proc.
33rd SIGCSE Technical Symp. Computer Science Education,
ACM, 2002, pp. 142-146.

[13] Cooper, S., Dann, W., and Pausch, R. Teaching objects-first
in introductory computer science. In Proc. 34th SIGCSE
Technical Symp. Computer Science Education, ACM, 2003,
pp. 191-195.

[14] Clover: a code coverage tool for Java.
http://www.thecortex.net/clover/.

[15] Decker, R. and Hirshfield, S. The top 10 reasons why ob-
ject-oriented programming can’t be taught in CS 1. In Proc.
25th Annual SIGCSE Symp. Computer Science Education,
ACM, 1994, pp. 51-55.

[16] Goldwasser, M.H. A gimmick to integrate software testing
throughout the curriculum. . In Proc. 33rd SIGCSE Techni-
cal Symp. Computer Science Education, ACM, 2002, pp.
271-275.

[17] Hilburn, T.B., and Towhidnejad, M. Software quality: A
curriculum postscript? In Proc. 31st SIGCSE Technical
Symp. Computer Science Education, ACM, 2000, pp. 167-
171.

[18] Isong, J. Developing an automated program checker. J.
Computing in Small Colleges, 16(3): 218-224.

[19] Jackson, D., and Usher, M. Grading student programs using
ASSYST. In Proc. 28th SIGCSE Technical Symp. Computer
Science Education, ACM, 1997, pp. 335-339.

[20] Jones, E.L. Software testing in the computer science cur-
riculum—a holistic approach. In Proc. Australasian Com-
puting Education Conf., ACM, 2000, pp. 153-157.

[21] Jones, E.L. Integrating testing into the curriculum—arsenic
in small doses. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 337-341.

[22] Jones, E.L. An experiential approach to incorporating soft-
ware testing into the computer science curriculum. In Proc.
2001 Frontiers in Education Conf. (FiE 2001), 2001, pp.
F3D7-F3D11.

[23] Jones, E.L. Grading student programs—a software testing
approach. J. Computing in Small Colleges, 16(2): 185-192.

[24] JUnit home page. http://www.junit.org/.
[25] Kölling, M. and Rosenberg, J. Guidelines for teaching ob-

ject orientation with Java. In Proc. 6th Annual Conf. Innova-
tion and Technology in Computer Science Education, ACM,
2001, pp. 33-36.

[26] Kölling, M. and Rosenberg, J. BlueJ—the hitchhiker’s guide
to object orientation. Maersk Mc-Kinney Moller Institute for
Production Technology, Univ. Southern Denmark, Tech. Re-
port 2002, No. 2, ISSN No. 1601-4219.
http://www.mip.sdu.dk/~mik/papers/hitch-hiker.pdf.

[27] Kölling, M. BlueJ—The Interactive Java Environment.
http://www.bluej.org/.

[28] Krause, K.L. Computer science in the Air Force Academy
core curriculum. In Proc.13th SIGCSE Technical Symp.
Computer Science Education, ACM, 1982, pp. 144-146.

[29] McCauley, R., Archer, C., Dale, N., Mili, R., Robergé, J.,
and Taylor, H. The effective integration of the software en-
gineering principles throughout the undergraduate computer
science curriculum. In Proc. 26th SIGCSE Technical Symp.
Computer Science Education, ACM, 1995, pp. 364-365.

[30] McCauley, R., Dale, N., Hilburn, T., Mengel, S., and Mur-
rill, B.W. The assimilation of software engineering into the
undergraduate computer science curriculum. In Proc. 31st
SIGCSE Technical Symp. Computer Science Education,
ACM, 2000, pp. 423-424.

[31] Mengel, S.A., Yerramilli, V. A case study of the static
analysis of the quality of novice student programs. In Proc.
30th SIGCSE Technical Symp. Computer Science Education,
ACM, 1999, pp. 78-82.

[32] Mitchell, W. A paradigm shift to OOP has occurred … im-
plementation to follow. J. Computing in Small Colleges,
16(2): 95-106.

[33] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C., and Balik, S. Improving the CS1 experience with
pair programming. In Proc. 34th SIGCSE Technical Symp.
Computer Science Education, ACM, 2003, pp. 359-362.

[34] PMD home page. http://pmd.sourceforge.net/.
[35] Reek, K.A. A software infrastructure to support introductory

computer science courses. In Proc. 27th SIGCSE Technical
Symp. Computer Science Education, ACM, 1996, pp. 125-
129.

[36] Roberts, E. Strategies for encouraging individual achieve-
ment in introductory computer science courses. In Proc. 31st
SIGCSE Technical Symp. Computer Science Education,
ACM, 2000, pp. 295-299

[37] Sanders, D., and Dorn, B. Jeroo: a tool for introducing ob-
ject-oriented programming. In Proc. 34th SIGCSE Technical
Symp. Computer Science Education, ACM, 2003, pp. 201-
204.

[38] Shepard, T., Lamb, M., and Kelly, D. More testing should be
taught. Communications of the ACM, 44(6): 103–108, June
2001.

[39] Williams, L., Upchurch, R.L. In support of student pair-
programming. In Proc. 32nd SIGCSE Technical Symp. Com-
puter Science Education, ACM, 2001, pp. 327-331.

