
Using Test-Driven Development in the Classroom:
Providing Students with Automatic, Concrete Feedback on Performance

Stephen H. EDWARDS

Dept. of Computer Science, Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
There is a need for better ways to teach software test-
ing skills to computer science undergraduates, who are
routinely underprepared in this area. This paper pro-
poses the use of test-driven development in the class-
room, requiring students to test their own code in pro-
gramming assignments. In addition, an automated
grading approach is used to assess student-written
code and student-written tests together. Students re-
ceive clear, immediate feedback on the effectiveness
and validity of their testing. This approach has been
piloted in an undergraduate computer science class.
Results indicate that students scored higher on their
program assignments while producing code with 45%
fewer defects per thousand lines of code.

Keywords: Computer science, software testing, test-
first coding, programming assignments, automated
grading

1. INTRODUCTION
Many computer science educators have been looking for an
effective way to improve the coverage of software testing skills
that undergraduates receive [13]. Rather than adding a single
course on the subject, some have proposed systematically infus-
ing testing concerns across the curriculum [6, 7, 8, 11, 12].
However, there is no clear consensus on how this goal is best
achieved.

One approach is to require students to test their own code in
programming assignments, and then assess them on this task as
well as on the correctness of their code solution. Two critical
issues immediately arise, however:

1. What testing approach should students use? The approach
must provide practical benefits that students can see, and
yet be simple enough to apply across the curriculum, well
before students have received advanced software engineer-
ing experience.

2. How will students be assessed on testing tasks? In particu-
lar, if students must test their own code, and then be
graded on both their code and their testing, how can we
avoid doubling the grading workload of faculty and teach-
ing assistants while also providing feedback frequently

enough and specifically enough for students to improve
their performance?

This paper proposes the use of test-driven development in the
classroom. In conjunction, an automated grading strategy is
used to assess student-written code and student-written tests
together, providing clear and immediate feedback to students
about the effectiveness and validity of their testing.

2. BACKGROUND
The goal is to teach software testing in a way that will encour-
age students to practice testing skills in many classes and give
them concrete feedback on their testing performance, without
requiring a new course, any new faculty resources, or a signifi-
cant number of lecture hours in each course where testing will
be practiced [3].

2.1 Why Test-driven Development?
Test-driven development (TDD) is a code development strategy
that has been popularized by extreme programming [1, 2]. In
TDD, one always writes a test case (or more) before adding
new code. In fact, new code is only written in response to exist-
ing test cases that fail. By constantly running all existing tests
against a unit after each change, and always phrasing opera-
tional definitions of desired behavior in terms of new test cases,
TDD promotes a style of incremental development where it is
always clear what behavior has been correctly implemented and
what remains undone.

While TDD is not, strictly speaking, a testing strategy—it is a
code development strategy [1]—it is a practical, concrete tech-
nique that students can practice on their own assignments.
Most importantly, TDD provides visceral benefits that students
experience for themselves. It is applicable on small projects
with minimal training. It gives the programmer a great degree
of confidence in the correctness of their code. It encourages
students to always have a running version of what they have
completed so far. Finally, it encourages students to test features
and code as they are implemented. This preempts the “big
bang” integration problems that students often run into when
they work feverishly to write all the code for a large assign-
ment, and only then try to run, test, and debug it.

2.2 Prior Approaches to Automated Grad-
ing
Without considering testing practices, CS educators have de-
veloped many approaches to automatically assessing student
program assignments [4, 5, 9]. While such automated grading
systems vary, they typically focus on compilation and execution
of student programs against some form of instructor-provided
test data. Virginia Tech has been using a similar automated
grading system for student programs for more than six years
and has seen powerful results. Virginia Tech's system, which is
similar in principle to most systems that have been described, is
called the Curator.

A student can login to the Curator and submit a solution for a
programming assignment. When the solution is received, the
Curator compiles the student program. It then runs a test data
generator provided by the instructor to create input for grading
the submission. It also uses a reference implementation pro-
vided by the instructor to create the expected output. The Cura-
tor then runs the student's submission on the generated input,
and grades the results by comparing against the reference im-
plementation's output. The student then receives feedback in the
form of a report that summarizes the score, and that includes the
input used, the student's output, and the instructor's expected
output for reference.

In practice, such automated grading tools have been extremely
successful in classroom use. Automated grading is a vital tool in
providing quality assessment of student programs as enroll-
ments increase. Further, by automating the process of assessing
program behavior, TAs and instructors can spend their grading
effort on assessing design, style, and documentation issues.
Further, instructors usually allow multiple submissions for a
given program. This allows a student to receive immediate
feedback on the performance of his or her program, and then
have an opportunity to make corrections and resubmit before
the due deadline.

2.3 Challenges
Despite its classroom utility, an automatic grading strategy like
the one embodied in the Curator also has a number of shortcom-
ings:

• Students focus on output correctness first and foremost;
all other considerations are a distant second at best (design,
commenting, appropriate use of abstraction, testing one's
own code, etc.). This is due to the fact that the most imme-
diate feedback students receive is on output correctness,
and also that the Curator will assign a score of zero for
submissions that do not compile, do not produce output, or
do not terminate.

• Students are not encouraged or rewarded for performing
testing on their own.

• In practice, students do less testing on their own.

This last point is disturbing; in fact, many students rarely or
never perform serious testing of their own programs when the
Curator is used. This is understandable, since the Curator al-
ready has a test data generator for the problem and will auto-
matically send the student the results of running tests on his or
her program. Indeed, one of the biggest complaints from stu-
dents has to do with the form of the feedback, which currently

requires the student to do some work to figure out the source of
the error(s) revealed.

3. WEB-CAT: A TOOL FOR AUTO-
MATICALLY ASSESSING STUDENT

PROGRAMS
In order to consider classroom use of TDD practical, the chal-
lenges faced by existing automated grading systems must be
addressed. Web-CAT, the Web-based Center for Automated
Testing, is a new tool that grades student code and student tests
together. Most importantly, the assessment approach embodied
in this tool is based on the belief that a student should be given
the responsibility of demonstrating the correctness of his or her
own code.

3.1 Assessing TDD Assignments
In order to provide appropriate assessment of testing perform-
ance and appropriate incentive to improve, Web-CAT should do
more than just give some sort of “correctness” score for the
student’s code. In addition, it should assess the validity and the
completeness of the student’s tests. Web-CAT grades assign-
ments by measuring three scores: a test validity score, a test
completeness score, and a code correctness score.

First, the test validity score measures how many of the student’s
tests are accurate—consistent with the problem assignment.
This score is measured by running those tests against a refer-
ence implementation provided by the instructor to confirm that
the student’s expected output is correct for each test case.

Second, the test completeness score measures how thoroughly
the student’s tests cover the problem. One method to assess this
aspect of performance is to use the reference implementation
provided by the instructor as a surrogate representation of the
problem. By instrumenting this reference implementation to
measure the code coverage achieved by the student tests, a
score can be measured. In our initial prototype, this strategy
was used and branch coverage (basis path coverage) served as
the test completeness score. Other measures are also possible.

Third, the code correctness score measures how “correct” the
student’s code is. To empower students in their own testing
capabilities, this score is based solely on how many of the stu-
dent’s own tests the submitted code can pass. No separate test
data is provided by the instructor or teaching assistant. The
reasoning behind this decision is that, if the student's test data is
both valid (according to the instructor's reference implementa-
tion) and complete (also according to the reference), then it
must do a good job of exercising the features of the student
program.

To combine these three measures into one score, a simple for-
mula is used. All three measures are taken on a 0%–100% scale,
and the three components are simply multiplied together. As a
result, the score in each dimension becomes a “cap” for the
overall score—it is not possible for a student to do poorly in
one dimension but do well overall. Also, the effect of the multi-
plication is that a student cannot accept so-so scores across the
board. Instead, near-perfect performance in at least two dimen-
sions should become the expected norm for students.

To support the rapid cycling between writing individual tests
and adding small pieces of code, the Web-CAT Grader allows
unlimited submissions from students up until the assignment
deadline. Students can get feedback any time, as often as they
wish. However, because their score is based in part on the tests

Figure 1: Web-CAT feedback on a program assignment submission.

they have written, and their program performance is only as-
sessed by the tests they have written, to find out more about
errors in their own programs, it will be necessary for the student
to write the test cases.

3.2 Providing Feedback to Students
The Web-CAT Grader uses a web interface for student submis-
sions and for reporting. The feedback provided to students was
inspired by JUnit’s GUI TestRunner: “when the bar is green the
code is clean” [10]. Figure 1 shows a sample screen shot of the
results viewed by students after a submission. The three com-
ponent scores and the final cumulative score are graphically
summarized in two bars. The first bar assesses the program,
showing the percentage of test cases passed. Since this bar is
static, rather than the dynamic progress bar in the JUnit
TestRunner, part of the bar is shown in green and part in red,
based on the proportion of student-provided tests that have been
passed. The second bar assesses the student’s test suite. The
size of the bar reflects the degree of coverage achieved by the
test suite. The color of the bar indicates the validity of the test
suite: green means all tests were valid, and red means at least
one test‘s expected output disagreed with the reference imple-
mentation.

Below the bar graph summary, the details of the test runs are
printed in a format similar to the one produced by JUnit’s text
output TestRunner. First, the student program’s test execution
information is presented. Each failed test case is specifically
identified with a descriptive message, so the student can deter-
mine where to go next to find the problem. Second, the refer-
ence implementation’s test execution information is presented
in the same format. Any “failed” test cases in this section indi-
cate student-written test cases that have incorrect expected out-
put.

4. PRELIMINARY EVALUATION OF
WEB-CAT

To evaluate the practicality of this approach, it was tried out in
an upper-division undergraduate computer science course. The
course used for this evaluation was CS 3304: “Comparative
Languages,” a typical undergraduate programming languages
course. Students in the course normally write four program
assignments throughout the semester, each requiring two to
three weeks to complete. The basic evaluation strategy was to
provide basic instruction in TDD and employ Web-CAT for
grading all programming assignments, and then compare stu-
dent performance with that achieved in a past offering of the
course when TDD was not used.

4.1 Method
In the Spring 2003 semester, 59 students completed the Com-
parative Languages course, using Web-CAT to submit all pro-
gramming assignments. The Spring 2001 offering of the course
was chosen for comparison, so the original programming as-
signments from that semester were given again in Spring 2003.
In Spring 2001, students did not use TDD and instead used the
older automated grading system, Virginia Tech’s Curator, when
submitting assignments. Fortunately, an electronic archive of
all submissions made during that semester was available for
detailed analysis. Web-CAT also maintained a detailed archive
of new submissions for comparison. A total of 59 students
completed the course in Spring 2001, for a total of 118 subjects
split between the two treatments.

Unfortunately, while TDD practices are strongly supported in
many object-oriented languages, students in the Comparative
Languages course write programs using a number of other pro-
gramming paradigms, including procedural programming, func-
tional programming, and logic programming, in languages like
Pascal, Scheme, and Prolog. Since no generally available TDD
tools exist for these languages, a simple and easy-to-use infra-
structure for writing and executing TDD-oriented test cases was
developed. Students were given approximately 30 minutes of
classroom instruction on TDD, how to write test cases, how to
execute tests, and how to interpret results. Further, when ex-
ample programs were developed “live” in class sessions later in
the semester, the same TDD infrastructure was used by the
instructor to model expected behavior properly.

4.2 Results
After assignments were turned in, the final submission of each
student in both semesters was analyzed. This analysis was re-
stricted to the first programming assignment (in Pascal) due to
manpower limitations.

Table 1: Comparing program submissions between
groups; all differences are significant at α = 0.05.

 With TDD
(2003)

Without
(2001)

Web-CAT Score 94.0% 76.8%

Code Coverage 93.6% 90.0%

Defects/KSLOC 38 70

Table 1 summarizes the results obtained when comparing the
program submissions between the two groups of students. Be-
cause Web-CAT and the older Curator system use different
grading approaches, the Spring 2001 submissions were also
submitted through Web-CAT for scoring. In Spring 2001, how-
ever, students did not write test cases. Rather than using a fixed
set of instructor-provided test data, the 2001 programs were
graded using a test data generator provided by the instructor.
This generator produced a random set of 40 test cases for each
new submission, providing broad coverage of the entire prob-
lem. To re-score each 2001 submission using Web-CAT, the
generator-produced test cases originally produced for grading
that submission in 2001 were simultaneously submitted as if
they were produced by the student. As shown in Table 1, stu-
dents in 2003 scored significantly higher than students in 2001.

This should be no surprise, since students using Web-CAT re-
ceived specific feedback on the quality and thoroughness of
their testing effort, information that was unavailable to the other
group of students. By seeing a direct measure of the coverage
produced by their test suite, and having unlimited opportunities
to add test cases and try to improve, students using Web-CAT
were able to increase their coverage scores. As shown in Table
1, the branch coverage scores achieved by student-written test
suites in 2003 were significantly higher than the code coverage
scores achieved by the random test data generator used for
automated grading in 2001. Since students in 2003 did not have
access to the reference implementation, they could only in-
crease their coverage scores by creatively “guessing” what
kinds of behavior or features they should test, either by looking
at the assignment specification or by looking at their own solu-
tion more closely. In effect, this simple feedback mechanism

implicitly encouraged students to practice and develop their
skills at developing good black box test cases.

Finally, the student programs were analyzed to uncover the
bugs they contained. One of the most common ways to meas-
ure bugs is to assess defect density, that is, the average number
of defects (or bugs) contained in every 1000 non-commented
source lines of code (KSLOC). On large projects, defect den-
sity data can often be collected by analyzing bug tracking data-
bases. For student programs, however, measuring defects can
be more difficult.

To provide a uniform treatment in this experiment, a compre-
hensive test suite was developed for analysis purposes. A suite
that provided 100% condition/decision coverage on the instruc-
tor’s reference implementation was the starting point. Then all
test suites submitted by 2003 students and all randomly gener-
ated suites used to grade 2001 submissions were inspected, and
all non-duplicating test cases from this collection were added to
the comprehensive suite. For this experiment, two test cases are
“duplicating” if each program in each of the student groups
produces the same result (pass or fail) on both test cases. Non-
duplicating test cases are thus “independent” for at least one
program under consideration, but may provide redundant cov-
erage for others. Once the comprehensive test suite was con-
structed, every program under consideration was run against it.

While the resulting numbers capture the relative number of
defects in programs, they do not represent defect density. To
get defect density information, a selection of 18 programs were
selected, 9 from each group. These programs had all comments
and blank lines stripped from them. They were then debugged
by hand, making the minimal changes necessary to achieve a
100% pass rate on the comprehensive test suite. The total num-
ber of lines added, changed, or removed, normalized by the
program length, was then used as the defects per KSLOC meas-
ure for that program. A linear regression was performed to look
for a relationship between the defects/KSLOC numbers and the
raw number of test cases failed from the comprehensive test
suite in this sample population. This produced a correlation
significant at the 0.05 level, which was then used to estimate the
defects/KSLOC for the remaining programs in the two student
groups.

Table 1 summarizes the results of this analysis, which show that
students who used TDD and Web-CAT submitted programs
containing approximately 45% fewer defects per 1000 lines of
code. While the defects/KSLOC rates shown here are far above
industrial values, with values often cited around 4 or 5 de-
fects/KSLOC, this is to be expected for student-quality code
developed with no process control and no independent testing.

While the results summarized in Table 1 indicate that students
do produce higher quality code using this approach, it is also
important to consider how students react to TDD and Web-
CAT. The 2003 students completed an anonymous survey de-
signed to elicit their perceptions of both the process and the
prototype tool. All students in the Spring 2003 semester had
used an automated grading/submission system before (the Cura-
tor).

Students expressed a strong preference for Web-CAT over their
past experiences. Specifically, they found that Web-CAT was
more helpful at detecting errors in their programs than the Cura-
tor (89.8% agree or strongly agree). In addition, they believed
it provided excellent support for TDD (83.7% agree or strongly
agree).

Students also expressed a strong preference for the benefits
provided by TDD. Using TDD increases the confidence that
students have in the correctness of their code (65.3% agree or
strongly agree). Using TDD also increases the confidence that
students have when making changes to their code (67.3% agree
or strongly agree). Finally, most students would like to use
Web-CAT and TDD for program assignments in future classes,
even if it were not required for that course (73.5% agree or
strongly agree).

5. CONCLUSIONS AND FUTURE WORK
Preliminary experience with TDD in the classroom and with
automated assessment is very positive, indicating a significant
potential for increasing the quality of student code. We plan to
apply this technique in our introductory programming sequence,
where students will program in Java and use JUnit [10]. We
also plan to extend the empirical comparison of student pro-
grams to this larger group of students. Further, we plan to adapt
the assessment approach used to measure test completeness so
that the tool can provide specific, directed feedback to students
about how and where they can improve the completeness of
their testing efforts.

ACKNOWLEDGMENTS
I gratefully acknowledge the contributions to this work pro-
vided by Anuj Shah, Amit Kulkarni, and Gaurav Bhandari,,
who implemented many of the features of the automated grad-
ing and feedback system described here.

REFERENCES
[1] Beck, K. Aim, fire (test-first coding). IEEE Software,

18(5): 87-89, Sept./Oct. 2001.

[2] Beck, K. Test-Driven Development: By Example. Addi-
son-Wesley, Boston, MA. 2003.

[3] Goldwasser, M.H. A gimmick to integrate software testing
throughout the curriculum. . In Proc. 33rd SIGCSE Tech-
nical Symp. Computer Science Education, ACM, 2002, pp.
271-275.

[4] Isong, J. Developing an automated program checker. J.
Computing in Small Colleges, 16(3): 218-224.

[5] Jackson, D., and Usher, M. Grading student programs
using ASSYST. In Proc. 28th SIGCSE Technical Symp.
Computer Science Education, ACM, 1997, pp. 335-339.

[6] Jones, E.L. Software testing in the computer science cur-
riculum—a holistic approach. In Proc. Australasian Com-
puting Education Conf., ACM, 2000, pp. 153-157.

[7] Jones, E.L. Integrating testing into the curriculum—
arsenic in small doses. In Proc. 32nd SIGCSE Technical
Symp. Computer Science Education, ACM, 2001, pp. 337-
341.

[8] Jones, E.L. An experiential approach to incorporating
software testing into the computer science curriculum. In
Proc. 2001 Frontiers in Education Conf. (FiE 2001), 2001,
pp. F3D7-F3D11.

[9] Jones, E.L. Grading student programs—a software testing
approach. J. Computing in Small Colleges, 16(2): 185-
192.

[10] JUnit Home Page. Web page last accessed Mar. 21, 2003:
<http://www.junit.org/>

[11] McCauley, R., Archer, C., Dale, N., Mili, R., Robergé, J.,
and Taylor, H. The effective integration of the software
engineering principles throughout the undergraduate com-
puter science curriculum. In Proc. 26th SIGCSE Technical

Symp. Computer Science Education, ACM, 1995, pp. 364-
365.

[12] McCauley, R., Dale, N., Hilburn, T., Mengel, S., and Mur-
rill, B.W. The assimilation of software engineering into
the undergraduate computer science curriculum. In Proc.
31st SIGCSE Technical Symp. Computer Science Educa-
tion, ACM, 2000, pp. 423-424.

[13] Shepard, T., Lamb, M., and Kelly, D. More testing should
be taught. Communications of the ACM, 44(6): 103–108,
June 2001

