
IDE SUPPORT FOR TEST-DRIVEN DEVELOPMENT AND
AUTOMATED GRADING IN BOTH JAVA AND C++ Department of Computer Science, Virginia Tech

<http://web-cat.sourceforge.net/>

Anthony Allowatt and Stephen Edwards
aallowat@vt.edu, edwards@cs.vt.edu

 LinkedDeque (ICProject)

 DequeInterface.h (ITranslationUnit)

 class DequeInterface (IStructureDeclaration)

 LinkedDeque.h (ITranslationUnit)

 class LinkedDeque : DequeInterface (IStructureDeclaration)

 enqueueHead() (IMethodDeclaration)

 enqueueTail() (IMethodDeclaration)

 ...

 LinkedDequeTest.h (ITranslationUnit)

 class LinkedDequeTest : CxxTest::TestSuite (IStructureDeclaration)

 testEnqueueHead() (IMethodDeclaration)

 testEnqueueTail() (IMethodDeclaration)

 testEquality() (IMethodDeclaration)

 valueHelper() (IMethodDeclaration)

 main.cpp (ITranslationUnit)

 main() (IFunctionDeclaration)

This diagram represents a sample project DOM tree — the elements
highlighted in red are collected by the CxxTest builder when the
runner is being generated. Since the class LinkedDequeTest inherits
CxxTest::TestSuite, any of its public methods beginning with “test”
are flagged as test cases and executed after the project is built.

CxxTest is an open source unit testing framework for C++, available from <http://cxxtest.sourceforge.net/>.

1 Configuring the Electronic Submission Plug-in
• The course instructor

provides a URL that
contains information
about the assignments
that can be submitted

• The students “set and
forget” this one time in
the Eclipse preferences

• Students can also
provide a default
username for the
submission wizard

• If the mailto: protocol will be used, students must specify an
outgoing mail server and return e-mail address

• Submitting assignments to an automated grader can be a tedious
and error-prone process

• Assignment submission is an interruption in the development
cycle — students must leave their programming environment,
bundle their project files properly, log in to the remote system,
send the files, and wait for results

• Students may submit incorrect files or archive them in the wrong
format

• This plug-in aims to eliminate many of these bottlenecks and
make submission from the IDE as simple as possible

The Assignment Submission Process

2 Choosing the Project to Submit
To provide flexibility in the user interface, the
provided action sets allow students to submit a
project in the following ways.

• Choosing the “ Submit...” action from the
context menu of any project in the workspace
will submit that project

• Clicking the “ ” button in the toolbar or
choosing “ Submit Project...” from the
“Project” menu will submit the currently active
project

3 Choosing the Submission Target
• The submission wizard loads the

targets from the configuration
URL and displays them as a tree

• Students choose the appropriate
target and enter their
authentication information for the
remote system

• The submission engine then
collects and archives the files that
are to be submitted from the
project and transmits them to the
remote system

• If any errors occur, such as missing
files or a network problem, then
the final page of the wizard relays
this information to the user

4 Viewing the Graded Results
• If the remote system returns a

response string (such as an HTML page
returned by an HTTP server), this
response is displayed in a browser
window embedded in the Eclipse
editor area

• Containing the entire submission
process in the IDE increases student
productivity and allows them to
quickly navigate between their results
and their project source code

• Future enhancements planned would
provide an extension point to allow
users to write custom response
handlers as extensions that could more
fully interact with Eclipse — for
instance, by adding their own views,
action sets, or other functionality
specific to a particular grading system

• Submission targets are specified by an XML file that is structured
into a hierarchy of assignment groups and assignments

• Instructors can use file patterns to tell the submission engine
which files in a project to include, which to exclude, and which
are required before submission is permitted

• The submission engine has built-in support for http, https, ftp,
mailto, and file protocols

• Also includes support for packaging project files in ZIP and JAR
archives

• Additional protocols and packagers can be added by
implementing extensions based on extension points provided by
the submission plug-in

• New protocols are used by specifying the protocol name in the
scheme portion of the transport URI

• New packagers are used by referencing their fully-qualified
extension ID

Using and Extending the Submission Engine

Sample Submission Targets File
<?xml version="1.0" encoding="utf-8"?>
<submission-targets
 xmlns="http://web-cat.cs.vt.edu/submissionTargets">
 <required pattern="*.java"/>
 <include pattern="*.java"/>
 <exclude pattern="*.class"/>

 <assignment name="Project 2">
 <exclude pattern="*.data"/>
 <packager id="net.sf.webcat.eclipse.submitter.packagers.jar"/>
 <transport uri="http://web-cat.cs.vt.edu:9000/.../submit">
 <param name="u" value="${user}"/>
 <param name="p" value="${pw}"/>
 <param name="a" value="Project 2"/>
 <param name="d" value="VTEdAuth"/>
 <file-param name="file1" value="${user}.jar"/>
 </transport>
 </assignment>
</submission-targets>

Viewing Test Case Results in the CxxTest View
• A second incremental builder attached at the end of the build process executes the test cases

• As the tests are performed, the runner generates XML-formatted output containing the file name and line
number information about the tests, as well as the values or conditions that caused any of the assertions to
fail

• The CxxTest view
mimics the JUnit view
with the test hierarchy
and progress bar, to
ease the transition from
Java to C++ for our
students

• Markers are also placed
in the Problems view
and in the margins of
the source files where
any of the test cases
failed

Using Incremental Builders to Manage Test Cases
• An incremental builder attached to the beginning of the build

process uses the CDT document object model to traverse each file
in the project and collect classes that derive from
CxxTest::TestSuite

• This builder
generates a C++
source file that
contains code to
instantiate and run
the test cases

• The generated file
is then added to
the project to be
built by the
makefile builder
along with the rest
of the source

The CDT Document Object Model

