
6/25/13	
  

1	
  

Stephen 
Edwards 

 
Dept. of 

Computer 
Science 

 
Virginia Tech 

Automatically Grading 
Programming Assignments 

with Web-CAT 

http://web-cat.org/cta13 

¡ A plug-in-based web 
application 

¡ Supports electronic 
submission and 
automated grading of 
programming 
assignments 

¡ Fully customizable, scriptable 
grading actions and feedback 
generation 

¡ Lots of support for grading students 
based on how well they test their 
own code 

What 
is 
Web-CAT? 

¡ About 80 institutions and growing 

¡ 14,448 users on our servers, 
approaching 20K users worldwide 

¡ Since 2003, Virginia Tech’s servers 
alone have processed 
approximately: 

§ 964,926 program submissions 

§ By 14,448 users 

§ In 562 course sections 

Who 
uses 
Web-CAT? 

¡ Now it’s almost routine 

¡ Tools like JUnit , and XUnit 
frameworks for other languages, 
make it much easier 

¡ Built-in support by many 
mainstream and educational IDEs 
makes it much easier 

¡ Many instructors have also 
experimented with automated 
grading based on such testing 
frameworks 

¡ Here are my experiences in 
teaching test-driven development 
with the help of an automated 
grader over the past 10 years 

More 
educators 
are 
adding 
software 
testing 
to their 
program-
ming 
courses 

Why have we added software testing 
across our programming core? 

¡ Students cannot test their own 
code 

¡ Want a culture shift in student 
behavior 

¡ A single upper-division course 
would have little impact on 
practices in other classes 

¡ So: Systematically incorporate 
testing practices across many 
courses 

CS1 

CS2 

OO 
Design 

Data 
Struct 

Testing 
Practices 

Software testing helps students 
frame and carry out experiments 

¡ The problem : too much focus on synthesis and 
analysis too early in teaching CS 

¡ Need to be able to read and comprehend source 
code 

¡ Envision how a change in the code will result in a 
change in the behavior 

¡ Need explicit, continually reinforced practice in 
hypothesizing about program behavior and then 
experimentally verifying their hypotheses 



6/25/13	
  

2	
  

¡ Expect students to test their own 
work 

¡ Empower students by engaging 

them   in the process of assessing 
their own programs 

¡ Require students to demonstrate 
the correctness of their own work 

through testing 

¡ Do this consistently across many 
courses 

Expect 
students 
to apply 
testing 
skills all 
the time 

¡ Regular CS1 and CS2 assignments 
(of course!) 

¡ Text adventure games 

¡ Greenfoot-style micro-worlds 

¡ Asteroids , MineSweeper 

¡ AI computer players for 
Battleship!, Tetris, and more 

¡ Random maze explorers 

¡ Swing GUI applications (even 2D 
drawing editors) 

¡ Android apps (even 2D and 
physics-based games, and map-
based geotagged photo apps) 

¡ Parsers and interpreters for PL 
courses 

What 
kinds  
of 
assign-
ments? 

¡ We want to start with skills that are 
directly applicable to authentic 
student-oriented tasks 

¡ Don’t want to add bureaucratic 
busywork to assignments 

¡ Without tool support, this is a lost 
cause! 

¡  It is imperative to give students skills 
they value 

¡  . . .  But most textbooks only give a 
“conceptual” intro to idealized 
industrial practices, not techniques 
students can use in their own 
assignments 

What 
tools 
and 
tech-
niques 
should 
we 
teach? 

Test-driven development is very 
accessible for students 

¡ Also called “test-first coding” 

¡ Focuses on thorough unit testing at the level of 
individual methods/functions 

¡ “Write a little test, write a little code” 

¡ Tests come first, and describe what is expected, 
then followed by code, which must be revised 
until all tests pass 

¡ Encourages lots of small (even tiny) iterations 

Students can apply TDD and get 
immediate, useful benefits 

¡ Conceptually, easy for 
students to understand 
and relate to 

¡ Increases confidence in 
code 

¡ Increases understanding  
of requirements 

¡ Preempts “big bang” 
integration 

TDD tools are widely, freely available 

¡ Lots of open-source tools, particularly for OO 
languages 

¡ JUnit (for Java): http://junit.org/ 

¡ XUnit links (for other languages): 
  http://xprogramming.com/software/ 

¡ We use tools like this for Java, C++, Scheme, 
Prolog, Haskell, and even Pascal in our courses 



6/25/13	
  

3	
  

0

25

50

75

100

125

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Students Ranked by Defect Rate

B
ug

s/
K

SL
O

C

0

25

50

75

100

125

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Students Ranked by Defect Rate

B
ug

s/
K

SL
O

C

Students improve their code quality 
when required to test 

Newly written “untested” code                                                     

             Commerical-quality code 

Submissions Relative to Due Date

0

5

10

15

20

More +9 +8 +7 +6 +5 +4 +3 +2 +1 Due -1 -2

Days Before Due Date

N
um

be
r o

f 
Su

bm
is

si
on

s

With Testing Without Testing

Submissions Relative to Due Date

0

5

10

15

20

More +9 +8 +7 +6 +5 +4 +3 +2 +1 Due -1 -2

Days Before Due Date

N
um

be
r o

f 
Su

bm
is

si
on

s

With Testing Without Testing

Students start earlier and finish 
earlier 

 
                                                     

We use Web-CAT to automatically 
check student work 

¡ Web application written in 100% pure Java 

¡ Deployed as a servlet 

¡ Built on Apple’s WebObjects 

¡ Uses a large-grained plug-in architecture 
internally, providing for easily extensible data 
model, UI, and processing features 

Grading plug-ins are the key to 
Web-CAT’s flexibility and extensibility 

¡ Processing for an assignment consists of a “tool 
chain” or pipeline of one or more grading plug-ins 

¡ The instructor has complete control over which plug-
ins appear in the pipeline, in what order, and with what 
parameters 

¡ A simple and flexible, yet powerful way for plug-ins to 
communicate with Web-CAT, with each other 

¡ We have a number of existing plug-ins for Java, C++, 
Scheme, Prolog, Pascal, Standard ML, … 

¡  Instructors can write and upload their own plug-ins 

¡ Plug-ins can be written in any language executable 
on the server (we usually use Perl) 

¡ First, we measure how many of the student’s own 
tests pass 

¡ Second, we instrument student code and measure 
code coverage while the student’s tests are 
running 

¡ Third, we use instructor-provided reference tests 
to cross-check the student’s tests 

¡ We multiply the percentages together, so 
students must excel at all three to increase their 
score 

Assessing student tests is tricky,  so 
we use complementary methods 

Web-CAT provides timely, constructive 
feedback on how to improve 

¡ Indicates where code 
can be improved 

¡ Indicates which parts 
were not tested well 
enough 

¡ Provides as many 
“revise/ resubmit” 
cycles as possible 



6/25/13	
  

4	
  

¡ A course is an academic course 
that can be offered over and over 

¡ A course offering is a specific 
offering of a course during a 
specific semester or term 

¡ An assignment is a reusable set 
of instructions and grading 
procedures/criteria 

¡ An assignment offering is a 
specific offering of an assignment 
within a specific course offering 
(with a due date) 

First, 
some 
basic 
Web-CAT 
terms 

¡ The instructor can write reference 
tests 

.. . or not 

¡ The student can write his/her own 
software tests 

.. . or not 

¡ Static analysis tools can check 
coding style 

.. . or not  

For Java, 
Web-CAT 
provides 
three main 
features 
you can 
combine 
for 
grading 

Let’s see it working! 

¡ All of today’s examples are on the web: 
 

   http://web-cat.org/cta13 

 

public class DvrRecording 
{ 
  private String title; 
  private int duration; 
 
  public DvrRecording( 
    String title, int duration) 
  { 
    ... 
  } 
 
  public String getTitle() { ... } 
  public int getDuration() { ... } 
  public String toString() { ... } 
} 

Suppose 
we have 
a class 
for DVR 
record-
ings 

public void testToString() 
{ 
  // 1. Initial conditions 
  DvrRecording recording = 
    new DvrRecording("Lost”, 60); 
 
  // 2. Action to test 
  String output = 
    recording.toString(); 
 
  // 3. Check expected results 
  assertEquals( 
    "Lost [60 min.]", output); 
} 

A test 
might 
look 
like  
this 
 

public void testToString() 
{ 
  DvrRecording recording = 
    new DvrRecording("Lost”, 60); 
  assertEquals( 
    "Lost [60 min.]”, 
    recording.toString()); 
} 

The 
same, 
but 
shorter 

Naming/signature convention 

Assertions compare expected and actual outcomes 



6/25/13	
  

5	
  

private DvrRecording recording; 
 
// Initial conditions for all tests 
public void setUp() 
{ 
  recording = 
    new DvrRecording("Lost”, 60); 
} 
 
public void testToString() 
{ 
  assertEquals( 
    "Lost [60 min.]”, 
    recording.toString()); 
} 
 

With 
common 
setup 
factored 
out 

Always starts in a clean starting state 

private DvrRecording recording; 
 
@Before 
public void setUp() 
{ 
  recording = 
    new DvrRecording("Lost”, 60); 
} 
@Test 
public void testToString() 
{ 
  assertEquals( 
    "Lost [60 min.]”, 
    recording.toString()); 
} 
 

The 
same, 
but in    
JUnit 4 

Annotations instead of inheritance 

No more naming conventions 

Let’s see it working! 

¡ All of today’s examples are on the web: 
 

   http://web-cat.org/cta13 

 

Walkthrough wrap-up 

¡ Time for questions about the steps we have 
demonstrated .. . 

¡  . . . or questions about how to use it with your own 
assignments 

The most important step in writing 
testable assignments is … 

¡ Learning to write tests yourself 

¡ Writing an instructor’s solution with tests that 
thoroughly cover all the expected behavior 

¡ Practice what you are teaching/preaching 

¡ Extra effort before assignment is “opened” (more 
prep time) but less effort after assignment is due 
(less grading time) 

¡ Exceptional conditions 

¡ Main programs 

¡ Code that reads/write to/from 
stdin/stdout or files 

¡ Assignments with lots of design 
freedom 

¡ Code with graphical output 

¡ Code with a graphical user 
interface 

Areas 
to look 
out for 

How do you write tests for: 



6/25/13	
  

6	
  

¡ Set stdin in test cases 
¡ Get history of stdout (cleanly 

reset for each test) 
¡ Newline normalization for output 
¡ System.exit() throws exception 
¡ Better error messages for student 

assertion mistakes 
¡ “Fuzzy” string matching (ignore 

caps, punctuation, spacing, etc.) 
¡ Regular expression and fragment 

matching  
¡ Adaptive infinite loop protection 

during grading 
¡ Swing GUI testing through LIFT 

Our 
testing 
library 
provides 
... 

In our student.jar library: 

¡ Requires greater clarity and specificity 

¡ Requires you to explicitly decide what you wish to 
test, and what you wish to leave open to student 

interpretation 

¡ Requires you to unambiguously specify the behaviors 
you intend to test 

¡ Requires preparing a reference solution before the 
project is due, more upfront work for professors or TAs 

¡ Grading is much easier as many things are taken care 
by Web-CAT; course staff can focus on assessing 
design 

Lessons learned writing testable 
assignments 

¡ Students appreciate the feedback from tests, but 
will avoid thinking more deeply about the 
problem 

¡ Seeing the results from a complete set of tests 
discourages student from thinking about how to 
check about their solution on their own 

¡ This limits the learning benefits , which come in 
large part from students writing their own tests 

¡ Lesson: balance providing suggestive feedback 
without “giving away” the answers: lead the 
student to think about the problem 

If you give students tests instead of 
writing their own 

Conclusion: including software testing 
promotes learning and performance 

¡ If you require students to write their own tests .. . 

¡ Our experience indicates students are more likely 
to complete assignments on time , produce one 
third less bugs , and achieve higher grades on 
assignments 

¡ It is definitely more work for the instructor 

¡ But it definitely improves the quality of 
programming assignment writeups and student 
submissions 

It is time for any final questions … 

¡ About anything covered ... 

¡ About how I’ve used these techniques in courses 

¡ About how we start our freshmen out in the very 
first lab 

¡ About the availability of Web-CAT 

¡  . . . Or anything else you want to ask 

¡ Our community is our most 
valuable asset! 

  http://web-cat.org 

Thank 
You! 


