Automatically Grading Programming Assignments with Web-CAT

http://web-cat.org/cta13

What is Web-CAT?

- A plug-in-based web application
- Supports electronic submission and automated grading of programming assignments
- Fully customizable, scriptable grading actions and feedback generation
- Lots of support for grading students based on how well they test their own code

Who uses Web-CAT?

- About 80 institutions and growing
- 14,448 users on our servers, approaching 20K users worldwide
- Since 2003, Virginia Tech’s servers alone have processed approximately:
 - 964,926 program submissions
 - By 14,448 users
 - In 562 course sections

Why have we added software testing across our programming core?

- Students cannot test their own code
- Want a culture shift in student behavior
- A single upper-division course would have little impact on practices in other classes
- So: Systematically incorporate testing practices across many courses

Why have we added software testing across our programming core?

- The problem: too much focus on synthesis and analysis too early in teaching CS
- Need to be able to read and comprehend source code
- Envision how a change in the code will result in a change in the behavior
- Need explicit, continually reinforced practice in hypothesizing about program behavior and then experimentally verifying their hypotheses

Software testing helps students frame and carry out experiments
- Expect students to test their own work
- Empower students by engaging them in the process of assessing their own programs
- Require students to demonstrate the correctness of their own work through testing
- Do this consistently across many courses

<table>
<thead>
<tr>
<th>What kinds of assignments?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular CS1 and CS2 assignments (of course!)</td>
</tr>
<tr>
<td>Text adventure games</td>
</tr>
<tr>
<td>Greenfoot-style micro-worlds</td>
</tr>
<tr>
<td>Asteroids, Minesweeper</td>
</tr>
<tr>
<td>AI computer players for Battleship! Tetris, and more</td>
</tr>
<tr>
<td>Random maze explorers</td>
</tr>
<tr>
<td>Swing GUI applications (even 2D drawing editors)</td>
</tr>
<tr>
<td>Android apps (even 2D and physics-based games, and map-based geotagged photo apps)</td>
</tr>
<tr>
<td>Parsers and interpreters for PL courses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test-driven development is very accessible for students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Also called “test-first coding”</td>
</tr>
<tr>
<td>Focuses on thorough unit testing at the level of individual methods/functions</td>
</tr>
<tr>
<td>“Write a little test, write a little code”</td>
</tr>
<tr>
<td>Tests come first, and describe what is expected, then followed by code, which must be revised until all tests pass</td>
</tr>
<tr>
<td>Encourages lots of small (even tiny) iterations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What tools and techniques should we teach?</th>
</tr>
</thead>
<tbody>
<tr>
<td>We want to start with skills that are directly applicable to authentic student-oriented tasks</td>
</tr>
<tr>
<td>Don’t want to add bureaucratic busywork to assignments</td>
</tr>
<tr>
<td>Without tool support, this is a lost cause!</td>
</tr>
<tr>
<td>It is imperative to give students skills they value</td>
</tr>
<tr>
<td>But most textbooks only give a “conceptual” intro to idealized industrial practices. Not techniques students can use in their own assignments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students can apply TDD and get immediate, useful benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptually, easy for students to understand and relate to</td>
</tr>
<tr>
<td>Increases confidence in code</td>
</tr>
<tr>
<td>Increases understanding of requirements</td>
</tr>
<tr>
<td>Preempts “big bang” integration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDD tools are widely, freely available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of open-source tools, particularly for OO languages</td>
</tr>
<tr>
<td>JUnit (for Java): http://junit.org/</td>
</tr>
<tr>
<td>XUnit links (for other languages): http://xprogramming.com/software/</td>
</tr>
<tr>
<td>We use tools like this for Java, C++, Scheme, Prolog, Haskell, and even Pascal in our courses</td>
</tr>
</tbody>
</table>
Students improve their code quality when required to test

Students start earlier and finish earlier

We use Web-CAT to automatically check student work

- Web application written in 100% pure Java
- Deployed as a servlet
- Built on Apple’s WebObjects
- Uses a large-grained plug-in architecture internally, providing for easily extensible data model, UI, and processing features

Grading plug-ins are the key to Web-CAT’s flexibility and extensibility

- Processing for an assignment consists of a “tool chain” or pipeline of one or more grading plug-ins
- The instructor has complete control over which plug-ins appear in the pipeline, in what order, and with what parameters
- A simple and flexible, yet powerful way for plug-ins to communicate with Web-CAT, with each other
- We have a number of existing plug-ins for Java, C++, Scheme, Prolog, Pascal, Standard ML, …
- Instructors can write and upload their own plug-ins
- Plug-ins can be written in any language executable on the server (we usually use Perl)

Assessing student tests is tricky, so we use complementary methods

- First, we measure how many of the student’s own tests pass
- Second, we instrument student code and measure code coverage while the student’s tests are running
- Third, we use instructor-provided reference tests to cross-check the student’s tests
- We multiply the percentages together, so students must excel at all three to increase their score

Web-CAT provides timely, constructive feedback on how to improve

- Indicates where code can be improved
- Indicates which parts were not tested well enough
- Provides as many revise/resubmit cycles as possible
A course is an academic course that can be offered over and over. A course offering is a specific offering of a course during a specific semester or term. An assignment is a reusable set of instructions and grading procedures/criteria. An assignment offering is a specific offering of an assignment within a specific course offering (with a due date).

The instructor can write reference tests... or not. The student can write his/her own software tests... or not. Static analysis tools can check coding style... or not.

Let's see it working!

All of today's examples are on the web:

http://web-cat.org/cta13

public class DvrRecording {
 private String title;
 private int duration;

 public DvrRecording(String title, int duration) {
 ...
 }

 public String getTitle() { ... }
 public int getDuration() { ... }
 public String toString() { ... }
}

Suppose we have a class for DVR recordings.

A test might look like this:

public void testToString() {
 // 1. Initial conditions
 DvrRecording recording = new DvrRecording("Lost", 60);
 // 2. Action to test
 String output = recording.toString();
 // 3. Check expected results
 assertEquals("Lost [60 min.]", output);
}

The same, but shorter:

public void testToString() {
 DvrRecording recording = new DvrRecording("Lost", 60);
 assertEquals("Lost [60 min.]", recording.toString());
}
private DvrRecording recording;

// Initial conditions for all tests
public void setUp()
{
 recording =
 new DvrRecording("Lost", 60);
}

public void testToString()
{
 assertEquals("Lost [60 min.]",
 recording.toString());
}

With common setup factored out

private DvrRecording recording;

@Before
public void setUp()
{
 recording =
 new DvrRecording("Lost", 60);
}

@Test
public void testToString()
{
 assertEquals("Lost [60 min.]",
 recording.toString());

The same, but in JUnit 4

Let’s see it working!

- All of today’s examples are on the web:
 http://web-cat.org/cta13

Walkthrough wrap-up

- Time for questions about the steps we have demonstrated ...
- ... or questions about how to use it with your own assignments

The most important step in writing testable assignments is ...

- Learning to write tests yourself
- Writing an instructor’s solution with tests that thoroughly cover all the expected behavior
- Practice what you are teaching/preaching
- Extra effort before assignment is “opened” (more prep time) but less effort after assignment is due (less grading time)

How do you write tests for:

- Exceptional conditions
- Main programs
- Code that reads/write to/from stdin/stdout or files
- Assignments with lots of design freedom
- Code with graphical output
- Code with a graphical user interface

Areas to look out for
In our student.jar library:
- Set stdin in test cases
- Get history of stdout (cleanly reset for each test)
- Newline normalization for output
- System.exit() throws exception
- Better error messages for student assertion mistakes
- "Fuzzy" string matching (ignore caps, punctuation, spacing, etc.)
- Regular expression and fragment matching
- Adaptive infinite loop protection during grading
- Swing GUI testing through LIFT

Our testing library provides ...

Lessons learned writing testable assignments
- Requires greater clarity and specificity
- Requires you to explicitly decide what you wish to test, and what you wish to leave open to student interpretation
- Requires you to unambiguously specify the behaviors you intend to test
- Requires preparing a reference solution before the project is due, more upfront work for professors or TAs
- Grading is much easier as many things are taken care by Web-CAT, course staff can focus on assessing design

If you give students tests instead of writing their own
- Students appreciate the feedback from tests, but will avoid thinking more deeply about the problem
- Seeing the results from a complete set of tests discourages student from thinking about how to check about their solution on their own
- This limits the learning benefits, which come in large part from students writing their own tests
- Lesson: balance providing suggestive feedback without 'giving away' the answers: lead the student to think about the problem

Conclusion: including software testing promotes learning and performance
- If you require students to write their own tests ...
- Our experience indicates students are more likely to complete assignments on time, produce one third less bugs, and achieve higher grades on assignments
- It is definitely more work for the instructor
- But it definitely improves the quality of programming assignment writeups and student submissions

It is time for any final questions ...
- About anything covered ...
- About how I’ve used these techniques in courses
- About how we start our freshmen out in the very first lab
- About the availability of Web-CAT
- ... Or anything else you want to ask

Thank You!

Our community is our most valuable asset!
http://web-cat.org