
5/21/13	

1	

Stephen
Edwards

Virginia Tech

Adding
Software Testing

to
Programming Assignments

http://web-cat.org/cseet2013

¡ How can I add software testing to
my assignments?

¡ How can I assess student testing
efforts?

¡ How can I write “testable”
assignments?

¡ And show you some live
examples!

My
goals
today
are
to . . .

Answer these questions:

Why have we added software testing
across our programming core?

¡ Students cannot test their own
code

¡ Want a culture shift in student
behavior

¡ A single upper-division course
would have little impact on
practices in other classes

¡ So: Systematically incorporate
testing practices across many
courses

CS1

CS2

OO
Design

Data
Struct

Testing
Practices

¡ Now it’s almost routine

¡ Tools like JUnit , and XUnit
frameworks for other languages,
make it much easier

¡ Built-in support by many
mainstream and educational IDEs
makes it much easier

¡ Many instructors have also
experimented with automated
grading based on such testing
frameworks

¡ Here are my experiences in
teaching test-driven development
with the help of an automated
grader over the past 10 years

More
educators
are
adding
software
testing
to their
program-
ming
courses

¡ Regular CS1 and CS2 assignments
(of course!)

¡ Text adventure games

¡ Greenfoot-style micro-worlds

¡ Asteroids , MineSweeper

¡ AI computer players for
Battleship!, Tetris, and more

¡ Random maze explorers

¡ Swing GUI applications (even 2D
drawing editors)

¡ Android apps (even 2D and
physics-based games, and map-
based geotagged photo apps)

¡ Parsers and interpreters for PL
courses

What
kinds
of
assign-
ments?

¡ CS1

§ Jeroo maze explorer

§ “Invasion of the Greeps” contest

§ Battleship!

§ Asteroids

§ “Design your own” game

¡ CS2

§ Adventure Time! (Android text
adventure)

§ Maze solver app

§ Yelp restaurant guide

§ “Design your own” Android app

Just this
semester

5/21/13	

2	

Software testing helps students
frame and carry out experiments

¡ The problem : too much focus on synthesis and
analysis too early in teaching CS

¡ Need to be able to read and comprehend source
code

¡ Envision how a change in the code will result in a
change in the behavior

¡ Need explicit, continually reinforced practice in
hypothesizing about program behavior and then
experimentally verifying their hypotheses

¡ Expect students to test their own
work

¡ Empower students by engaging

them in the process of assessing
their own programs

¡ Require students to demonstrate
the correctness of their own work

through testing

¡ Do this consistently across many
courses

Expect
students
to apply
testing
skills all
the time

¡ We want to start with skills that are
directly applicable to authentic
student-oriented tasks

¡ Don’t want to add bureaucratic
busywork to assignments

¡ Without tool support, this is a lost
cause!

¡  It is imperative to give students skills
they value

¡  . . . But most textbooks only give a
“conceptual” intro to idealized
industrial practices, not techniques
students can use in their own
assignments

What
tools
and
tech-
niques
should
we
teach?

Test-driven development is very
accessible for students

¡ Also called “test-first coding”

¡ Focuses on thorough unit testing at the level of
individual methods/functions

¡ “Write a little test, write a little code”

¡ Tests come first, and describe what is expected,
then followed by code, which must be revised
until all tests pass

¡ Encourages lots of small (even tiny) iterations

Students can apply TDD and get
immediate, useful benefits

¡ Conceptually, easy for
students to understand
and relate to

¡ Increases confidence in
code

¡ Increases understanding
of requirements

¡ Preempts “big bang”
integration

TDD tools are widely, freely available

¡ Lots of open-source tools, particularly for OO
languages

¡ JUnit (for Java): http://junit.org/

¡ XUnit links (for other languages):
 http://xprogramming.com/software/

¡ We use tools like this for Java, C++, Scheme,
Prolog, Haskell, and even Pascal in our courses

5/21/13	

3	

The basic steps involved in a test

1.  Set up the “initial conditions” for the test

2.  Carry out the action(s) you want to test

3.  Check that the desired result(s) were
achieved

4.  Clean up (often unneeded in Java)

public class DvrRecording
{
 private String title;
 private int duration;

 public DvrRecording(
 String title, int duration)
 {
 ...
 }

 public String getTitle() { ... }
 public int getDuration() { ... }
 public String toString() { ... }
}

Suppose
we have
a class
for DVR
record-
ings

public void testToString()
{
 // 1. Initial conditions
 DvrRecording recording =
 new DvrRecording("Lost”, 60);

 // 2. Action to test
 String output =
 recording.toString();

 // 3. Check expected results
 assertEquals(
 "Lost [60 min.]", output);
}

A test
might
look
like
this

public void testToString()
{
 DvrRecording recording =
 new DvrRecording("Lost”, 60);
 assertEquals(
 "Lost [60 min.]”,
 recording.toString());
}

The
same,
but
shorter

Naming/signature convention

Assertions compare expected and actual outcomes

private DvrRecording recording;

// Initial conditions for all tests
public void setUp()
{
 recording =
 new DvrRecording("Lost”, 60);
}

public void testToString()
{
 assertEquals(
 "Lost [60 min.]”,
 recording.toString());
}

With
common
setup
factored
out

Always starts in a clean starting state

private DvrRecording recording;

@Before
public void setUp()
{
 recording =
 new DvrRecording("Lost”, 60);
}
@Test
public void testToString()
{
 assertEquals(
 "Lost [60 min.]”,
 recording.toString());
}

The
same,
but in
JUnit 4

Annotations instead of inheritance

No more naming conventions

5/21/13	

4	

The JUnit version of the basic steps

1.  Create a test class

2.  Set up the “initial conditions” in setUp()

3.  Write individual tests as test methods :

a.  Carry out the action(s) you want to test

b.  Check that the desired result(s) were achieved

4.  Clean up using tearDown() (rarely needed)

¡ How can I add software testing to
my assignments?

¡ How can I assess student testing
efforts?

¡ How can I write “testable”
assignments?

¡ And show you some live
examples!

My
goals
today
are
to . . .

Answer these questions:

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

A simple example will ground the
discussion: our first live demo!

¡ Let’s switch to an IDE for this example

¡ I’ll use Eclipse and Java for this tutorial, but
similar techniques apply in other IDEs or OO
languages

¡ If you visit the workshop web site after the tutorial,
you can find this under “Example 1: Building a
Gradebook”

¡ Most XUnit frameworks
include test runners that
allow you to directly execute
test cases from one class or
many

¡ Often, either textual or
graphical output is available

¡ Many IDEs include direct
support for running such
test cases (BlueJ, Eclipse,
JGRASP, .. .)

Tools make running tests easy
You can use test cases in assignment

specifications

¡ Provide downloadable test cases in the
assignment

¡ Students run the tests as a sanity check,
compliance to assignment specification

¡ Details of method names, signatures,
interfaces are checked at compilation time

¡ Gives student direct evidence that program
runs as expected

5/21/13	

5	

Pros

¡ Students learn about
test cases and how to
use them

¡ Greater clarity and
precision in
assignments

¡ Easy to combine with
“acceptance tests”

Cons

¡ Students don’t learn
to write tests

¡ Least impact on
student behavior

Assessing test cases in assignment
specifications

Let’s discuss …

¡ Questions about this example?

¡ Questions about how to apply this technique in an
assignment?

¡ Questions about the costs or benefits?

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

You can write “acceptance tests” to
use for grading

¡ Write your own test suite(s) for grading

¡ Instructor or TA can run student code against your
tests as part of the assessment process

¡ Can even be used in automated grading systems,
if available

¡ Helps standardize the assessment of correctness

Using acceptance tests in grading

¡ An example:

¡ If the assignment is to write Student and
Gradebook classes …

¡ Give instructor-written StudentTest and
GradebookTest classes to the grader

¡ Run these tests against student submissions, and
use the percentage of passed tests as a measure
of program correctness

Pros

¡ Increased consistency and
thoroughness of correctness
assessment

¡ Easy to automate

¡ With appropriate automation,
more grading time available
for assessing design and
giving feedback

Assessing the use of acceptance
tests

5/21/13	

6	

Assessing the use of acceptance
tests

¡ Students don’t learn to write tests
¡ Students focus more on getting

correct behavior, less on quality
¡ Acceptance tests only work for

tightly specified assignments
¡ Difficult to accommodate

individual differences in the
design of student solutions (using
an adaptor can help)

¡ Limited ability to assess solutions
to open-ended problems

Cons
¡ Don’t specify student design

¡ Instead, do specify the interface for a test
adaptor that allows all the behavior to be
explored

§ Students create their own design

§ Students also write their own adaptor
implementation

¡ Careful adaptor interface design can ensure
students don’t use the adaptor as their design

A test adaptor can decouple test
cases from student designs

Example 2: Appointments

¡ Let’s switch to the IDE for this example

¡ If you visit the workshop web site after the tutorial,
you can find this under:

 “Example 2: Appointments”

Let’s discuss …

¡ Questions about this example?

¡ Questions about how to apply this technique in an
assignment?

¡ Questions about the costs or benefits?

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

¡ Expect students to test their own
work

¡ Empower students by engaging

them in the process of assessing
their own programs

¡ Require students to demonstrate
the correctness of their own work

through testing

¡ Do this consistently across many
courses

Expect
students
to apply
testing
skills all
the time

5/21/13	

7	

Requiring student-written tests

An example:

¡ If the assignment is to write Student and
Gradebook classes …

¡ Require students to write their own StudentTest
and GradebookTest classes as part of the
assignment

¡ Require students to run these tests themselves,
and then to include their test classes as part of
their program submissions

0

25

50

75

100

125

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Students Ranked by Defect Rate

B
ug

s/
K

SL
O

C

0

25

50

75

100

125

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Students Ranked by Defect Rate

B
ug

s/
K

SL
O

C

Students improve their code quality
when required to test

Newly written “untested” code

 Commerical-quality code

Submissions Relative to Due Date

0

5

10

15

20

More +9 +8 +7 +6 +5 +4 +3 +2 +1 Due -1 -2

Days Before Due Date

N
um

be
r o

f
Su

bm
is

si
on

s

With Testing Without Testing

Submissions Relative to Due Date

0

5

10

15

20

More +9 +8 +7 +6 +5 +4 +3 +2 +1 Due -1 -2

Days Before Due Date

N
um

be
r o

f
Su

bm
is

si
on

s

With Testing Without Testing

Students start earlier and finish
earlier

Pros

¡ Students learn to test

¡ Increased student
confidence in work

¡ Increased understanding of
behavioral requirements

¡ More likely to turn
assignments in on time

¡ Reduce bug density by one
third or more

Assessing student-written tests as
part of programming assignments

Assessing student-written tests as
part of programming assignments

¡ How do you assess student
performance at testing?

¡ How do you provide feedback so
students improve their testing
skills?

¡ More effort goes into writing
assignments so they are testable

¡ Hard to do well without
appropriate tool support

Cons

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

5/21/13	

8	

You can use a “reference model” to
assess student-written tests

¡ Some form of executable
model of the problem can be
used to gauge coverage of
student tests

¡ A reference solution is typical

¡ Run student’s tests against the
reference solution to assess
correctness of student tests

¡ Instrument reference solution
to assess the “thoroughness”
or completeness of student
tests

Using a reference model

¡ An example:

¡ If the assignment is to write Student and
Gradebook classes …

¡ Write your own solution to the problem

¡ Run student-written tests against this reference
model to confirm their correctness

¡ Optionally, use data about which portions of the
reference model were executed to assess
completeness of testing

Pros

¡ Provides consistency and
detail in assessing student
testing skills

¡ Can automate assessment of
student-written tests

¡ May lead to more detailed
feedback

Assessing the use of a reference
model in assessing tests

Assessing the use of a reference
model in assessing tests

¡ Have to write the model
¡ May have to instrument it by hand
¡ Ties down student-written tests

so they can only examine
behavior in the reference model,
using signatures present in the
reference model

¡ Limits use of open-ended
assignments

¡ May require overspecification of
assignment

Cons

1.  Use test cases as specifications

2.  Write “acceptance tests” for
grading

3.  Require student-written tests
as part of the assignment

4.  Use a reference model to
assess student tests

5.  Write assignments that focus on
testing and/or debugging
instead of writing code

There are
five main
strategies
for
adding
testing to
assign-
ments

Write assignments on testing or
debugging, rather than coding

¡ To promote comprehension and analysis skills .. .

¡ Give students some existing (buggy) code

¡ Require them to write tests, find the bugs, and
repair them

¡ You can combine this with instructor-written
acceptance tests, assessment of student-written
tests, or both

5/21/13	

9	

Using testing/debugging
assignments

¡ An example:

¡ See the Bricks example on the web site

¡ It includes a small project containing two buggy
classes

¡ Students are instructed to write tests, find the
bugs, and repair them

¡ Students submit their tests and their repaired
code, and are given feedback on how many of the
hidden bugs they have found

Pros

¡ Directs student attention solely
at testing and/or debugging skills

¡ Gives specific feedback on these
skills, rather than on code writing

¡ Really promotes comprehension
and analysis

¡ Students work with code from
other authors, rather than writing
from scratch

Assessing assignments that focus on
testing and debugging

Assessing assignments that focus on
testing and debugging

¡ Requires a different assessment
strategy than conventional
programming assignments

¡ Giving concrete, directed
feedback is important for
students to improve, but may
take more time to provide

¡ Can take time to write, compared
to code writing assignments

Cons

Example 3: Debugging Bricks

Let’s discuss …

¡ Questions about this example?

¡ Questions about how to apply this technique in an
assignment?

¡ Questions about the costs or benefits?

¡ How can I add software testing to
my assignments?

¡ How can I assess student testing
efforts?

¡ How can I write “testable”
assignments?

¡ And show you some live
examples!

My
goals
today
are
to . . .

Answer these questions:

5/21/13	

10	

First, realize that it is more work!

¡ If a student turns in both code and tests, then you
need to consider assessing (and giving feedback
on!):

§ Code correctness

§ Code quality (design, style, etc.)

§ Test suite correctness

§ Test suite thoroughness (coverage)

§ Test suite quality

Second, work within the limits of your
manpower

¡ You may not be able to do it all

¡ Prioritize which items you wish to devote your
resources toward

¡ Plan an assessment budget:

§ For example, you can break down the expected
time for grading one assignment into the expected
time to spend on each of the separate
subcategories

¡ Best targets of opportunity:

§ Code correctness

§ Test suite correctness

§ Test suite thoroughness
(coverage)

¡ Available tools:

§ Acceptance tests, student-written
tests, a reference solution (may
be instrumented), ...

Use
auto-
mation
where
you
can

¡ A plug-in-based web application

¡ Supports electronic submission
and automated grading of
programming assignments

¡ Fully customizable, scriptable
grading actions and feedback
generation

¡ Lots of support for grading
students based on how well
they test their own code

What is
Web-CAT
 ?

The Java plug-in grades assignments
that include student tests

¡ ANT-based build of arbitrary Java projects

¡ PMD and Checkstyle static analysis

¡ ANT-based execution of student-written JUnit tests

¡ Carefully designed Java security policy

¡ Clover test coverage instrumentation

¡ ANT-based execution of optional instructor
reference tests

¡ Unified HTML web printout

¡ Highly configurable (PMD rules, Checkstyle rules,
supplemental jar files, supplemental data files, java
security policy, point deductions, and lots more)

Our strategy is a hybrid of techniques

¡ We require student-written tests for everything

¡ We use automation to:

§ Run student tests on student code

§ Instrument student code to measure test coverage

§ Run acceptance tests on student code

§ Run static analysis tools on student code (style,
commenting, etc.)

§ Combine measures into an appropriate score

5/21/13	

11	

¡ First, we measure how many of the student’s own
tests pass

¡ Second, we instrument student code and measure
code coverage while the student’s tests are
running

¡ Third, we use instructor-provided reference tests
to cross-check the student’s tests

¡ We multiply the percentages together, so
students must excel at all three to increase their
score

Assessing student tests is tricky, so
we use complementary methods

¡ How can I add software testing to
my assignments?

¡ How can I assess student testing
efforts?

¡ How can I write “testable”
assignments?

¡ And show you some live
examples!

My
goals
today
are
to . . .

Answer these questions:

The most important step in writing
testable assignments is …

¡ Learning to write tests yourself

¡ Writing an instructor’s solution with tests that
thoroughly cover all the expected behavior

¡ Practice what you are teaching/preaching

¡ Extra effort before assignment is “opened” (more
prep time) but less effort after assignment is due
(less grading time)

¡ Exceptional conditions

¡ Main programs

¡ Code that reads/write to/from
stdin/stdout or files

¡ Assignments with lots of design
freedom

¡ Code with graphical output

¡ Code with a graphical user
interface

Areas
to look
out for

How do you write tests for:

Testing exceptional conditions

¡ Unexpected exceptions are handled automatically
by JUnit

¡ If you want to test explicitly thrown exception:

§ JUnit 3: use try/catch

§ JUnit 4: add ‘expected’ parameter to the @Test
annotation

Testing main programs

¡ The key: think in object-oriented terms

¡ There should be a principal class that does all the
work, and a really short main program

¡ The problem is then simply how to test the
principal class (i.e., test all of its methods)

¡ Make sure you specify your assignments so that
such principal classes provide enough accessors
to inspect or extract what you need to test

5/21/13	

12	

Testing input and output behavior

¡ The key: specify assignments so that input and
output use streams given as parameters, and are
not hard-coded to specific sources destinations

¡ Then use string-based streams to write test cases;
show students how

¡ In Java, we use BufferedReaders and PrintWriters
for all I/O

¡ In C++, we use istreams and ostreams for all I/O

public static void main(String[] args)
{
 System.out.println("Hello world!");
}

Or use
JUnit
add-ons
(Ex 4)

public void testMain()
{
 HelloWorld.main(null);
 assertEquals("Hello world!\n",
 systemOut().getHistory());
}

public static void main(String[] args)
{
 System.out.println("Hello world!");
 System.exit(0);
}

Or use
JUnit
add-ons
(Ex 4)

public void testMain()
{
 try
 {
 HelloWorld.main(null);
 }
 catch (ExitCalledException e)
 {
 assertEquals(0, e.getStatus());
 }
 assertEquals("Hello world!\n",
 systemOut().getHistory());
}

¡ Set stdin in test cases
¡ Get history of stdout (cleanly

reset for each test)
¡ Newline normalization for output
¡ System.exit() throws exception
¡ Better error messages for student

assertion mistakes
¡ “Fuzzy” string matching (ignore

caps, punctuation, spacing, etc.)
¡ Regular expression and fragment

matching
¡ Adaptive infinite loop protection

during grading
¡ Swing GUI testing through LIFT

Our
testing
library
provides
...

In our student.jar library:

Assignments with lots of design
freedom

¡ Allowing design freedom is good so students can
learn design

¡ Two kinds of design freedom:

§ Students can make different design choices to
implement the same required behavior

§ Students have latitude to add their own individual
additions or flourishes or extras

When students implement same
behavior in different ways

¡ Good for practicing design skills

¡ To test required behavior, use a fixed API that
encapsulates the design freedom

¡ Write reference test against that API

¡ Or , just test common/required elements, and let
students be responsible for testing the rest

5/21/13	

13	

When students add their own extras

¡ Good to encourage creativity and individual
expression

¡ Limit instructor tests to only required features

¡ Write flexible tests that don’t impose extra
(hidden) assumptions

¡ Have students write their own test for their
extensions

Mock objects can also help

¡ A mock object is a ‘conveniently stubbed out’
replacement for the real thing for use in testing

¡ Allows decoupling object being tested from other
object dependencies

¡ Substitute behavior that is convenient for testing
for real behavior

¡ Google ‘JUnit mock objects’ for more information

Testing programs with graphical
output

¡ The key: if graphics are only for output, you can
ignore them in testing

¡ Ensure there are enough methods to extract the
key data in test cases

¡ We use this approach for testing Karel the Robot
programs, which use graphic animation so
students can observe behavior

Testing programs with graphical UIs

¡ This is a harder problem—maybe too distracting
for many students, depending on their level

¡ The key question: what is the goal in writing the
tests? Is it the GUI you want to test, some internal
behavior, or both?

¡ Three basic approaches:

§ Specify a well-defined boundary between the GUI
and the core, and only test the core code

§ Switch in an alternative implementation of the UI
classes during testing

§ Test by simulating GUI events

Example 5: Testing a GUI

¡ Button increments a counter
¡ Button is embedded in a panel that is self

contained
¡ Main program creates a window, puts the panel in

it and makes it visible

LIFT is our library for testing GUIs

¡ Student friendly
¡ Easy to write JUnit test for Swing, JTF, and

objectdraw
¡ Android version called RoboLIFT
¡ See our SIGCSE 2011 and 2012 papers on LIFT and

RoboLIFT

5/21/13	

14	

¡ Requires greater clarity and specificity

¡ Requires you to explicitly decide what you wish to
test, and what you wish to leave open to student

interpretation

¡ Requires you to unambiguously specify the behaviors
you intend to test

¡ Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

¡ Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing
design

Lessons learned writing testable
assignments

¡ Students appreciate the feedback from tests, but
will avoid thinking more deeply about the
problem

¡ Seeing the results from a complete set of tests
discourages student from thinking about how to
check about their solution on their own

¡ This limits the learning benefits , which come in
large part from students writing their own tests

¡ Lesson: balance providing suggestive feedback
without “giving away” the answers: lead the
student to think about the problem

If you give students tests instead of
writing their own

Conclusion: including software testing
promotes learning and performance

¡ If you require students to write their own tests .. .

¡ Our experience indicates students are more likely
to complete assignments on time , produce one
third less bugs , and achieve higher grades on
assignments

¡ It is definitely more work for the instructor

¡ But it definitely improves the quality of
programming assignment writeups and student
submissions

It is time for any final questions …

¡ About anything covered ...

¡ About how I’ve used these techniques in courses

¡ About how we start our freshmen out in the very
first lab

¡ About the availability of Web-CAT

¡  . . . Or anything else you want to ask

¡ Our community is our most
valuable asset!

 http://web-cat.org

Thank
You!

